玉米叶片铜污染的EEMD-MA-FD光谱诊断模型 |
| |
作者姓名: | 程凤 杨可明 王敏 李燕 高鹏 张超 |
| |
作者单位: | 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083,中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083,中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083;华北理工大学, 河北 唐山 063210,中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083,中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083,中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083 |
| |
基金项目: | 煤炭资源与安全开采国家重点实验室2017年开放基金项目(SKLCRSM17KFA09);国家自然科学基金项目(41271436);中央高校基本科研业务费专项资金项目(2009QD02) |
| |
摘 要: | 以铜为例探讨重金属不同胁迫浓度下玉米叶片光谱的微弱信息量差异,在2017年测定的玉米叶片光谱数据和Cu~(2+)含量的基础上,结合集成经验模态分解(Ensemble empirical mode decomposition,EEMD)、Mallat算法(MA)和分形维数(Fractal dimension,FD)构建EEMD-MA-FD光谱诊断模型来进行光谱弱信息变换监测。与红边最大值、蓝边最大值等常规重金属污染监测方法进行对比分析,验证EEMD-MA-FD模型在玉米叶片铜污染监测中的优越性,最后利用2016年采集的光谱数据作为检验数据验证模型的稳定性。结果显示,玉米叶片Cu~(2+)含量与EEMD-MA-FD模型结果存在较强的相关性,相关系数为-0.942 2,检验数据Cu~(2+)含量与模型结果相关系数为-0.993 7,与实验结果有较高的一致性。由此验证了EEMD-MA-FD诊断模型在农作物重金属铜污染监测中的可行性。
|
关 键 词: | 铜污染 玉米叶片 集成经验模态分解 Mallat 分形维数 |
收稿时间: | 2018-07-03 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《农业环境科学学报》浏览原始摘要信息 |
|
点击此处可从《农业环境科学学报》下载全文 |
|