首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phosphorus availability in soils amended with wheat residue char
Authors:Mohammed Masud Parvage  Barbro Ulén  Jan Eriksson  Jeffery Strock  Holger Kirchmann
Institution:1. Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
2. Southwest Research and Outreach Center, University of Minnesota, 23669 130th Street, Lamberton, MN, PO Box 428, 56125, USA
Abstract:Plant availability and risk for leaching and/or runoff losses of phosphorus (P) from soils depend among others on P concentration in the soil solution. Water-soluble P in soil measures soil solution P concentration. The aim of this study was to understand the effect of wheat residue char (biochar) addition on water-soluble P concentration in a wide range of biochar-amended soils. Eleven agricultural fields representing dominant soil texture classes of Swedish agricultural lands were chosen. Concentrations of water-soluble P in the soils and in biochar were measured prior to biochar incorporation to soils in the laboratory. Experiments with three dominant soil textures—silt loam, clay loam, and an intermediate loam soil with different rates of biochar addition (i.e., 0.5, 1, 2, and 4 %; w/w) showed that the highest concentration of water-soluble P was achieved at an application rate of 1 %. At higher application rates, P concentrations decreased which coincided with a pH increase of 0.3–0.7 units. When the 11 soils were amended with 1 % (w/w) biochar, water-soluble P concentrations increased in most of the soils ranging from 11 to 253 %. However, much of the water-soluble P added through the biochar was retained (33–100 %). We concluded that wheat residue char can act as a source of soluble P, and low and high additions of biochar can have different effects on soil solution P concentration due to possible reactions with Ca and Mg added with biochar.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号