首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLO v4的玉米种子外观品质检测方法
引用本文:范晓飞,王林柏,刘景艳,周玉宏,张君,索雪松. 基于改进YOLO v4的玉米种子外观品质检测方法[J]. 农业机械学报, 2022, 53(7): 226-233
作者姓名:范晓飞  王林柏  刘景艳  周玉宏  张君  索雪松
作者单位:河北农业大学机电工程学院,保定071001
基金项目:国家自然科学基金面上项目(32072572)、河北省重点研发计划项目(20327403D)、河北省高层次人才项目(E2019100006)和河北农业大学人才引进研究项目(YJ201847)
摘    要:针对玉米种子在外观品质检测中需要快速识别与定位的需求,提出了一种基于改进YOLO v4的目标检测模型,同时结合四通道(RGB+NIR)多光谱图像,对玉米种子外观品质进行了识别与分类。为了减少改进后模型的参数量,本文将主干特征提取网络替换为轻量级网络MobileNet V1。为了进一步提升模型的性能,通过试验研究了空间金字塔池化(Spatial pyramid pooling, SPP)结构在不同位置上对模型性能的影响,最终选取改进YOLO v4-MobileNet V1模型对玉米种子外观品质进行检测。试验结果表明,模型的综合评价指标平均F1值和mAP达到93.09%和98.02%,平均每检测1幅图像耗时1.85 s,平均每检测1粒玉米种子耗时0.088 s,模型参数量压缩为原始模型的20%。四通道多光谱图像的光谱波段可扩展到可见光范围之外,并能够提取出更具有代表性的特征信息,并且改进后的模型具有鲁棒性强、实时性好、轻量化的优点,为实现种子的高通量质量检测和优选分级提供了参考。

关 键 词:玉米种子  外观品质  多光谱图像  YOLO v4  MobileNet V1
收稿时间:2021-08-02

Corn Seed Appearance Quality Estimation Based on Improved YOLO v4
FAN Xiaofei,WANG Linbai,LIU Jingyan,ZHOU Yuhong,ZHANG Jun,SUO Xuesong. Corn Seed Appearance Quality Estimation Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 226-233
Authors:FAN Xiaofei  WANG Linbai  LIU Jingyan  ZHOU Yuhong  ZHANG Jun  SUO Xuesong
Affiliation:Hebei Agricultural University
Abstract:Aim to identify and position corn seed, an object detection model based on improved YOLO v4 was proposed. This model combined with multi-spectral images with four channels (RGB+NIR), the appearance quality of corn seeds was identified and classified. In order to reduce the number of parameters in the model, the trunk feature extraction network was replaced with the lightweight network MobileNet V1. To improve the performance of the model, the effect of spatial pyramid pooling (SPP) structure on the model performance was studied. Finally, the improved YOLO v4-MobileNet V1 model was selected to detect the appearance quality of corn seeds. The experimental results showed that the comprehensive evaluation indexes F1 and mAP of the model reached 93.09% and 98.02%, respectively. The average detection time of each image was 1.85s, and the average detection time of each corn seed was 0.088s. And the number of model parameters was compressed to 20% of the original model. The spectral band of four channel multi-spectral image can be extended beyond the visible range. Image can extract more representative feature information. The improved model had the advantages of strong robustness, good real-time performance and lightweight. It can provide a reference for high throughput quality detection and optimal classification of seeds.
Keywords:corn seeds  appearance quality  multi-spectral images  YOLO v4  MobileNet V1
本文献已被 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号