首页 | 本学科首页   官方微博 | 高级检索  
     

HYDRUS模型与遥感集合卡尔曼滤波同化提高土壤水分监测精度
作者姓名:丁建丽  陈文倩  王璐
作者单位:1. 新疆大学资源与环境科学学院,乌鲁木齐 830046;2. 绿洲生态教育部重点实验室,乌鲁木齐 830046,1. 新疆大学资源与环境科学学院,乌鲁木齐 830046;2. 绿洲生态教育部重点实验室,乌鲁木齐 830046,1. 新疆大学资源与环境科学学院,乌鲁木齐 830046;2. 绿洲生态教育部重点实验室,乌鲁木齐 830046
基金项目:国家自然科学基金(U1303381、41261090);自治区重点实验室专项基金(2016D03001);自治区科技支疆项目(201591101);教育部促进与美大地区科研合作与高层次人才培养项目;新疆大学优秀博士生科技创新项目(XJUBSCX-2016014)
摘    要:精确地估测干旱区土壤水分含量,对该区域的农业发展与水土保持具有重要意义。该文以MODIS与Landsat TM数据为数据源,利用其反演获得的条件温度植被指数(temperature-vegetation drought Index,TVDI)作为观测算子,将集合卡尔曼滤波(ensemble Kalman filter,En-KF)同化方法应用于水文模型(HYDRUS-1D),进行干旱区表层土壤水分的模拟。结果表明:遥感数据反演土壤水分所构建的二维特征空间TVDI与表层土壤水分有较好的一致性;En-KF同化方法对模型变量与观测算子的更新,与单纯使用HYDRUS模型相比,获得的表层土壤水分含量精度有了明显提高,其均方根误差缩小了1个百分点,平均误差缩小了5个百分点。可见,基于多源遥感数据对表层土壤水分的En-KF同化模拟在干旱区具有较大的潜力,是提高干旱区土壤水分含水量监测精度的有效手段。

关 键 词:土壤水分  遥感  同化  HYDRUS模型  En-KF  TVDI特征空间
收稿时间:2016-11-04
修稿时间:2017-05-10
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号