首页 | 本学科首页   官方微博 | 高级检索  
     

HYDRUS模型与遥感集合卡尔曼滤波同化提高土壤水分监测精度
引用本文:丁建丽,陈文倩,王 璐. HYDRUS模型与遥感集合卡尔曼滤波同化提高土壤水分监测精度[J]. 农业工程学报, 2017, 33(14): 166-172
作者姓名:丁建丽  陈文倩  王 璐
作者单位:1. 新疆大学资源与环境科学学院,乌鲁木齐 830046;2. 绿洲生态教育部重点实验室,乌鲁木齐 830046,1. 新疆大学资源与环境科学学院,乌鲁木齐 830046;2. 绿洲生态教育部重点实验室,乌鲁木齐 830046,1. 新疆大学资源与环境科学学院,乌鲁木齐 830046;2. 绿洲生态教育部重点实验室,乌鲁木齐 830046
基金项目:国家自然科学基金(U1303381、41261090);自治区重点实验室专项基金(2016D03001);自治区科技支疆项目(201591101);教育部促进与美大地区科研合作与高层次人才培养项目;新疆大学优秀博士生科技创新项目(XJUBSCX-2016014)
摘    要:精确地估测干旱区土壤水分含量,对该区域的农业发展与水土保持具有重要意义。该文以MODIS与Landsat TM数据为数据源,利用其反演获得的条件温度植被指数(temperature-vegetation drought Index,TVDI)作为观测算子,将集合卡尔曼滤波(ensemble Kalman filter,En-KF)同化方法应用于水文模型(HYDRUS-1D),进行干旱区表层土壤水分的模拟。结果表明:遥感数据反演土壤水分所构建的二维特征空间TVDI与表层土壤水分有较好的一致性;En-KF同化方法对模型变量与观测算子的更新,与单纯使用HYDRUS模型相比,获得的表层土壤水分含量精度有了明显提高,其均方根误差缩小了1个百分点,平均误差缩小了5个百分点。可见,基于多源遥感数据对表层土壤水分的En-KF同化模拟在干旱区具有较大的潜力,是提高干旱区土壤水分含水量监测精度的有效手段。

关 键 词:土壤水分;遥感;同化;HYDRUS模型;En-KF;TVDI特征空间
收稿时间:2016-11-04
修稿时间:2017-05-10

Improving monitoring precision of soil moisture by assimilation of HYDRUS model and remote sensing-based data by ensemble Kalman filter
Ding Jianli,Chen Wenqian and Wang Lu. Improving monitoring precision of soil moisture by assimilation of HYDRUS model and remote sensing-based data by ensemble Kalman filter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 166-172
Authors:Ding Jianli  Chen Wenqian  Wang Lu
Affiliation:1. College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China2. Key Laboratory of Oasis Ecosystem of Education Ministry, Xinjiang University, Urumqi 830046, China,1. College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China2. Key Laboratory of Oasis Ecosystem of Education Ministry, Xinjiang University, Urumqi 830046, China and 1. College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China2. Key Laboratory of Oasis Ecosystem of Education Ministry, Xinjiang University, Urumqi 830046, China
Abstract:Abstract: The mechanical properties of Satsuma mandarin are an important basis for the design and control of the automatic peeling device. In this paper, Satsuma mandarin was taken as the research object, and TMS-PRO texture analyzer was adopted. Special scissors cut along the fruit radial (fruit maximum equatorial diameter direction) and axially peeled out and pulled out different peeling widths. Citrus fruit top and pedicle were fixed in the 2 clamping edges of the fixed clamping mechanism or the longitudinal axis perpendicular to the clamping edges, and the radial part was fixed in the 2 clamping edges of the fixed clamping mechanism. Gripper clamped the peeled part of the peel. The moving probe of the texture instrument drove the gripping mechanism to move to overcome the adhesive force between peel and pulp. As the texture instrument continued to pull peel, the peel was peeled off from citrus surface. The maximum tensile force and the displacement in the separation of peel were obtained, which were as the experimental indices. The smaller the maximum separation tension, the more easily separated the skin of the citrus fruit; the separation of the larger displacement indicated that the longer the peeled peel length, the better the effect of peeling. The paper studied the peeling law of Satsuma mandarin in different pulling direction, pulling width and pulling speed by carrying out the mechanical properties test of peeling citrus. The main results were as follows: Firstly, there were 3 types of rupture during citrus peel separation (peel symmetrical tear, peel oblique tear and jagged cracks), in which the citrus peel length with symmetric cracks was the largest and the displacement was the best. Asymmetrical and jagged cracks forms of peel separation lead to shorter separation of peel, which is not conducive to achieving higher peel rate. Secondly, the stripping direction had the most significant effect on the maximum tension value of citrus fruits (P=0.006). The stripping direction also had a significant effect on the displacement (P=0.016). Results showed that the peeling strength of Satsuma mandarin had obvious anisotropy. Compared with radial direction of peeling, peeling width of the axial skin peeling is conducive to peel citrus, which can get longer peel. Thirdly, the peeling width had a significant effect on the maximal pulling force (P=0.034) and the displacement (P=0.795) in citrus fruit. When the peeling width was 25 mm, the maximum tension value was lower, 2.31 N. When the peeling width was 35 mm, the maximum tension value was larger, 2.55 N. When the peeling width was in the range of 25-35 mm, the displacement value was 47.32-48.33 mm and the fluctuation was small. Peel separation force increased as the width of the skin increased. For the existing citrus peeling machine with random cutting approach was not conducive to peeling, the ring cutting peeling should be used for the existing roller way to provide the possibility of axial peeling. At last, the maximum pulling force (P=0.043) and the separation displacement (P=0.105) were not significant. Peeling separation force increased with the increasing of pulling speed. For most of roller citrus peeling equipment, the maximum clamping force of the roller was generally much larger than the stripping force, so the citrus in the rolling process chose larger peeling width (the ring cut peel) and peeling speed, and peel separation process was more stable and efficient. In conclusion, this study provides an important basis for the design of wide-peel citrus peeling machine.
Keywords:soil moisture   remote sensing   assimilation   HYDRUS model   ensemble Kalman filter   feature space TVDI
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号