首页 | 本学科首页   官方微博 | 高级检索  
     


Sludge-derived organic carbon in an agricultural soil estimated by 13C abundance measurements
Authors:C. Parat,J. Leveque,,R. Chaussod, &   F. Andreux
Affiliation:UMR 1229, Microbiologie et Géochimie des Sols, Centre des Sciences de la Terre, 6 Bd Gabriel, 21000 Dijon Cedex; , and UMR 1229, Microbiologie et Géochimie des Sols, Centre de Microbiologie des Sols, 17 rue de Sully, 21034 Dijon Cedex, France
Abstract:The objective of this study is to develop a method to follow the dynamics of sludge‐derived organic carbon, which will allow us to understand the behaviour of trace metals in the sludge‐treated soils. We studied, in a sandy agricultural soil of southwest France, cultivated with maize and amended with sewage‐sludge over 20 years, the dynamics of different sources of organic matter and compared this with a control, which had never received any treatment. For the first time, a method is proposed that will distinguish and quantify sludge‐derived organic carbon, maize‐derived organic carbon, and native organic carbon. This method is based on the mean differences in δ13C abundances between native (−26.5‰), maize (−12.5‰) and sludge (−25.4‰) organic carbon. Three hypotheses on the dynamics of soil organic matter sources are proposed: (i) isotopic differences observed between control and sludge‐treated soils are due only to the incorporation of sludge C, whereas in the others, the control was used to model the incorporation of (ii) maize C or (iii) native C in the sludge‐treated soils. The comparison of the stocks of each source (native C, maize C and sludge C) found in the bulk soil with the sum of corresponding stocks found in particle‐size fractions allowed us to reject the two first hypotheses and to validate the last one. Repeated applications of sewage‐sludge induced accumulation of sludge‐derived organic carbon in the topsoil, and simultaneously contributed to the preservation of maize‐derived organic carbon. When sludge applications ceased, the rapid decrease in soil organic matter stocks was mostly caused by the degradation of the sludge‐derived organic carbon sources. At the same time, the maize‐derived organic carbon shifted from the coarsest fraction (200–2000 μm) to the finest fraction (0–50 μm). Therefore, this study has shown that repeated applications of sewage‐sludge induced changes in soil organic matter dynamics over time.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号