首页 | 本学科首页   官方微博 | 高级检索  
     


Highlighting the Biotechnological Potential of Deep Oceanic Crust Fungi through the Prism of Their Antimicrobial Activity
Authors:Maxence Quemener,Marie Dayras,Nicolas Frotté  ,Stella Debaets,Christophe Le Meur,Georges Barbier,Virginia Edgcomb,Mohamed Mehiri,Gaë  tan Burgaud
Affiliation:1.Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Brest, F-29280 Plouzané, France; (M.Q.); (N.F.); (S.D.); (C.L.M.); (G.B.);2.Marine Natural Products Team, Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France; (M.D.); (M.M.);3.Departments of Geology and Geophysics and Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
Abstract:Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.
Keywords:oceanic crust   fungi   secondary metabolites   molecular screening   antimicrobial assays
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号