首页 | 本学科首页   官方微博 | 高级检索  
     

基于机载LiDAR和光学遥感数据的热带橡胶林叶面积指数反演
引用本文:王强,舒清态,罗洪斌,王冬玲,字李,谢福明. 基于机载LiDAR和光学遥感数据的热带橡胶林叶面积指数反演[J]. 西北林学院学报, 2020, 35(4): 132-139. DOI: 10.3969/j.issn.1001-7461.2020.04.22
作者姓名:王强  舒清态  罗洪斌  王冬玲  字李  谢福明
作者单位:(西南林业大学 林学院,云南 昆明 650224)
摘    要:叶面积指数(LAI)作为表征植被冠层结构的重要参数,一直是气候变化和生态研究中的热点,遥感技术的发展为大范围叶面积指数的获取提供了可能。以景洪市热带橡胶林为研究对象,以机载LiDAR和Landsat8/OLI为信息源,结合44块样地实测数据,使用支持向量机回归(SVR)、BP神经网络(BPNN)和偏最小二乘回归(PLSR) 3种模型,在前期建立基于林分水平的LAI估测模型的基础上,进一步构建区域尺度的LAI反演模型,实现景洪市橡胶林LAI的反演。结果表明,基于LiDAR的林分水平模型中,SVR模型最优,决定系数(R2)为0.76,相对均方根误差(rRMSE)为17%,估测精度(P)为83%;以SVR模型估测结果作为区域尺度遥感反演模型的先验样本,结合Landsat8/OLI数据的BP神经网络模型反演效果最好,估测精度达76%。

关 键 词:机载LiDAR  Landsat8/OLI  叶面积指数  支持向量机回归(SVR)  BP神经网络(BPNN)  偏最小二乘回归(PLSR)

 Inversion of Leaf Area Index of Tropical Hevea brasiliensis Forest Based on Airborne LiDAR and Optical Remote Sensing Data
WANG Qiang,SHU Qing-tai,LUO Hong-bin,WANG Dong-ling,ZI Li,XIE Fu-ming.  Inversion of Leaf Area Index of Tropical Hevea brasiliensis Forest Based on Airborne LiDAR and Optical Remote Sensing Data[J]. Journal of Northwest Forestry University, 2020, 35(4): 132-139. DOI: 10.3969/j.issn.1001-7461.2020.04.22
Authors:WANG Qiang  SHU Qing-tai  LUO Hong-bin  WANG Dong-ling  ZI Li  XIE Fu-ming
Affiliation:(College of Forestry,Southwest Forestry University,Kunming 650224,Yunnan,China)
Abstract:As an important parameter to characterize vegetation canopy structure,leaf area index (LAI) has always been a hot topic in climate change and ecological research.The development of remote sensing technology provides an effective way to obtain LAI in a wide range.In this paper,the tropical Hevea brasiliensis forest occurring in Jinghong City was taken as the research object and the airborne LiDAR and Landsat8/OLI were taken as the information sources,combined with the measured data of 44 samples.Support vector machine regression (SVR),BP neural network (BPNN) and partial least-squares regression (PLSR) models were used.On the basis of the early establishment of LAI estimation model based on stand level,the regional scale leaf area inversion model was further constructed to realize the LAI inversion of H.brasiliensis forest in Jinghong city.The results showed that among the stand level models based on LiDAR,SVR model was the best.The R2 of SVR model based on LiDAR was 0.76,rRMSE was 17% and P was 83%.Taking the inversion results of stand level model as a prior sample of regional scale remote sensing estimation model,the BP neural network model combined with Landsat8/OLI data had the best inversion effect,and the estimation accuracy was 76%.
Keywords:airborne LiDAR  Landsat8/OLI  leaf area index  support vector machine regression (SVR)  BP neural network(BPNN)  partial least-squares regression (PLSR)
本文献已被 CNKI 等数据库收录!
点击此处可从《西北林学院学报》浏览原始摘要信息
点击此处可从《西北林学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号