首页 | 本学科首页   官方微博 | 高级检索  
     

基于电子舌和多元数据分析的咖啡焙炒度检测方法研究
引用本文:王凯丽,董文江,谷风林,张彦军,陆敏泉. 基于电子舌和多元数据分析的咖啡焙炒度检测方法研究[J]. 热带作物学报, 2015, 36(2): 396-403
作者姓名:王凯丽  董文江  谷风林  张彦军  陆敏泉
作者单位:中国热带农业科学院香料饮料研究所农业部香辛饮料作物遗传资源利用重点实验室国家重要热带作物工程技术研究中心;中国热带农业科学院香料饮料研究所农业部香辛饮料作物遗传资源利用重点实验室国家重要热带作物工程技术研究中心;中国热带农业科学院香料饮料研究所农业部香辛饮料作物遗传资源利用重点实验室国家重要热带作物工程技术研究中心;中国热带农业科学院香料饮料研究所农业部香辛饮料作物遗传资源利用重点实验室国家重要热带作物工程技术研究中心;中国热带农业科学院香料饮料研究所农业部香辛饮料作物遗传资源利用重点实验室国家重要热带作物工程技术研究中心
基金项目:国家自然科学基金项目(No. 31440071);中国热带农业科学院院本级基本科研业务费项目(No. 1630012014017)。
摘    要:利用电子舌技术结合多元数据分析对不同焙炒度(浅度、中度、深度)的咖啡豆进行区分。原始电子感官数据经归一化处理后,采用主成分分析(PCA)对其进行解析,结果表明:不同焙炒度的咖啡样品基本能够按各自特性聚为一类,扩展正则变量分析(ECVA)对样品的分类结果与PCA解析后的结果一致;比较不同的有监督模式识别方法:K-最近邻法(KNN)、偏最小二乘判别分析(PLS-DA)和最小二乘-支持向量机(LS-SVM)所建立模型对未知样品的预报能力,其中LS-SVM模型的预报结果较好,其识别率和预报率均为100%。

关 键 词:电子舌  焙炒咖啡  焙炒度  多元数据分析

Method of Determination on Roasting Degree of Coffee Samples Combined with Electronic Tongue and Multivariate Data Analysis
WANG Kaili,DONG Wenjiang,GU Fenglin,ZHANG Yanjun and LU Minquan. Method of Determination on Roasting Degree of Coffee Samples Combined with Electronic Tongue and Multivariate Data Analysis[J]. Chinese Journal of Tropical Crops, 2015, 36(2): 396-403
Authors:WANG Kaili  DONG Wenjiang  GU Fenglin  ZHANG Yanjun  LU Minquan
Affiliation:Spice and Beverage Research Institute, CATAS/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture/National Center of Important Tropical Crops Engineering and Technology Research;Spice and Beverage Research Institute, CATAS/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture/National Center of Important Tropical Crops Engineering and Technology Research;Spice and Beverage Research Institute, CATAS/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture/National Center of Important Tropical Crops Engineering and Technology Research;Spice and Beverage Research Institute, CATAS/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture/National Center of Important Tropical Crops Engineering and Technology Research;Spice and Beverage Research Institute, CATAS/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture/National Center of Important Tropical Crops Engineering and Technology Research
Abstract:An electronic tongue technology combined with multivariate data analysis was utilized to classify coffee samples from different roasting degree(light, medium, dark). Principal component analysis(PCA)was performed to the normalized data matrix to explore the space distribution of all samples. Results showed that samples could be clustered according to the respective properties, and similar results were obtained by extended canonical variates analysis(ECVA). Different pattern recognition techniques, such as K-nearest neighbors(KNN), partial least squares-discriminant analysis(PLS-DA)and least squares-support vector machines(LS-SVM)were used to construct calibration models to compare the performance. The recognition rate and prediction rate were all 100% for LS-SVM model.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《热带作物学报》浏览原始摘要信息
点击此处可从《热带作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号