首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of a Geonics EM31-3RT probe to delineate hydrologic regimes in a tile-drained field
Authors:H. Dadfar  R. J. Heck  G. W. Parkin  K. Barfoot-Kinsie
Affiliation:(1) School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada;(2) CH2M HILL Canada Limited, Kitchener, ON, O2G 4Y9, Canada;
Abstract:A world-wide need to use water resources efficiently necessitates more effective approaches to study water and contaminant transport in soil. This study examined the effectiveness of a multi-receiver electromagnetic induction probe (Geonics EM31-3RT) and modeling software (EMIGMA) to delineate hydrological regimes at field scale. The site consisted of 20 (15 m × 15 m) tile-drained plots in Southern Ontario, Canada. Measurements of apparent soil electrical conductivity (ECa) and magnetic susceptibility were obtained using the EM31-3RT in each plot at four distances (0, 2.25, 4.5 and 7.5 m) from the tile drain, and on three occasions (August 22, 26 and 29) in 2003. The EMIGMA was used to simulate a depth profile of electrical conductivity (ECs) from EM31-3RT readings. The near-surface soil showed significantly (p < 0.01) smaller ECa values than at greater depth. The ECa measurements made directly over the tile drains were smaller than those observed further away due to the presence of the drains. Cluster analysis indicated that the largest ECa values were at the lower elevations of the site related to the redistribution of moisture from higher elevations. The effect of tile drains and rainfall events on ECa was simulated well by EMIGMA, with smaller ECs values above the drains compared to further away, and showing an increase in ECs in the near-surface soil after rain. This study suggests that EM31-3RT measurements combined with EMIGMA simulation of electrical conductivity can provide valuable information on depth profiles of ECa and water dynamics in soil.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号