首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Targeted Deletion of Los1 Homologue Affects the Production of a Recombinant Model Protein in Pichia pastoris
Authors:Najmeh Zarei  Hosnieh Ghasemi  Mahsa Nayebhashemi  Mozhgan Zahmatkesh  Monire Jamalkhah  Nafiseh Moeinian  Zahra Mohammadi  Somayeh Enayati  Vahid Khalaj
Institution:1.Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; 2.Department of Biotechnology, College of Science, University of Tehran, Iran
Abstract:Background:The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Los1 (loss of supression) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends RLS. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods:A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 ScFv expression were compared between the parent and mutant strains.Results:The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively.Conclusion:The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains. Key Words: Aging, Longevity, Pichia pastoris, Recombinant proteins
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号