首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLO v5-TL的褐菇采摘视觉识别-测量-定位技术
引用本文:卢伟,邹明萱,施浩楠,王玲,DENG Yiming. 基于YOLO v5-TL的褐菇采摘视觉识别-测量-定位技术[J]. 农业机械学报, 2022, 53(11): 341-348
作者姓名:卢伟  邹明萱  施浩楠  王玲  DENG Yiming
作者单位:南京农业大学人工智能学院,南京210031;密歇根州立大学,东兰辛48824
基金项目:江苏省重点研发计划项目(BE2022363)、江苏省农业科技创新项目(CX(20)3068)、江苏省现代农机装备与技术示范推广项目(NJ2021-37)和高端外国专家引进计划项目(G2021145010L)
摘    要:为实现褐菇高效、精准、快速的自动化采摘,针对工厂化褐菇的种植特点,提出一种基于YOLO v5迁移学习(YOLO v5-TL)结合褐菇三维边缘信息直径动态估测法的褐菇原位识别-测量-定位一体化方法。首先,基于YOLO v5-TL算法实现复杂菌丝背景下的褐菇快速识别;再针对锚框区域褐菇图像进行图像增强、去噪、自适应二值化、形态学处理、轮廓拟合进行褐菇边缘定位,并提取边缘点和褐菇中心点的像素坐标;最后基于褐菇三维边缘信息的直径动态估测法实现褐菇尺寸的精确测量和中心点定位。试验结果表明单帧图像平均处理时间为50ms,光照强度低、中、高情况下采摘对象识别平均成功率为91.67%,其中高光强时识别率达100%,菇盖的尺寸测量平均精度为97.28%。研究表明,本文提出的YOLO v5-TL结合褐菇三维边缘信息直径动态估测法可实现工厂化种植环境下褐菇识别、测量、定位一体化,满足机器人褐菇自动化采摘需求。

关 键 词:褐菇  目标识别  定位  图像处理  尺寸测量  YOLO v5-TL
收稿时间:2022-07-27

Technology of Visual Identification-Measuring-Location for Brown Mushroom Picking Based on YOLO v5-TL
LU Wei,ZOU Mingxuan,SHI Haonan,WANG Ling,DENG Yiming. Technology of Visual Identification-Measuring-Location for Brown Mushroom Picking Based on YOLO v5-TL[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 341-348
Authors:LU Wei  ZOU Mingxuan  SHI Haonan  WANG Ling  DENG Yiming
Affiliation:Nanjing Agricultural University; Michigan State University
Abstract:To realize the efficient, accurate and rapid automatic picking of brown mushroom, the identification, size measurement and positioning of mushroom are the key to the robot selective picking operation. An integrated method for in situ identification, measurement and location of brown mushroom was proposed based on YOLO v5 transfer learning (YOLO v5-TL) and dynamic diameter estimation based on 3D edge information. Firstly, YOLO v5-TL algorithm was used to realize rapid identification of brown mushroom under complex mycelia background. Then, the image enhancement algorithm, denoising, adaptive binarization algorithm, morphological processing and contour fitting algorithm were used to locate the edge of the mushroom image in the anchor frame area, meanwhile, the pixel coordinates of the edge point and the center point were extracted. Finally, the dynamic diameter estimation method based on 3D edge information was used to accurately measure the size and locate the center point of the mushroom. The experimental results showed that the average processing time of single frame image was 50ms. The average success rate of picking object recognition under low, medium and high light intensity was 91.67%, and the recognition rate reached 100% under high light intensity. The average measurement accuracy of mushroom cover was 97.28%. The results showed that the proposed YOLO v5-TL method combined with 3D edge information diameter dynamic estimation method can realize the integration of identification, measurement and location of brown mushroom under factory planting, which met the demand of automatic picking of brown mushroom by robot.
Keywords:brown mushroom  object identification  location  image processing  dimensional measurement  YOLO v5-TL
本文献已被 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号