首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crop growth and nitrogen transformations in wheat (Triticum aestivum L.) planted after wetland rice (Oryza sativa L.)
Authors:Bacon  P E  Hoult  E H  McGarity  J W  Alter  D
Institution:(1) N.S.W. Department of Agriculture, Yanco Agricultural Institute, 2703 Yanco, New South Wales, Australia;(2) Department of Agronomy and Soil Science, University of New England, 2351 Armidale, New South Wales, Australia;(3) Present address: Biological and Chemical Research Institute, 2116 Rydalmere, New South Wales, Australia
Abstract:Summary A field study was undertaken to examine the effects of various management strategies on wheat (Triticum aestivum L.) performance and N cycling in an intensively cropped soil. Microplots receiving 100 kg N ha–1 as15NH4 + 15NO3 at sowing, tillering or stem elongation were compared with unfertilized microplots. Stubble from the previous rice crop was either incorporated, burnt without tillage, burnt then tilled or retained on the surface of untilled soil. Wheat grain yield ranged from 1.5 to 5.1 t ha and was closely related to N uptake. Plant accumulation of soil N averaged 36 kg N ha–1 (LSD 5% = 10) on stubble-incorporation plots and 54 kg N ha–1 on stubble-retention plots. Fertilizer N accumulation averaged 18 kg N ha–1 (LSD 51% = 6) on stubble-incorporation plots and 50 kg N ha–1 on stubble-retention plots. Tillage had little effect on burnt plots. Delaying N application from sowing until stem elongation increased average fertilizer N uptake from 26 to 39 kg N ha–1 (LSD 5% = 6), but reduced soil N uptake from 50 to 37 kg N ha (LSD 5% = 10).Immobilization and leaching did not vary greatly between treatments and approximately one-third of the fertilizer was immobilized. Less than 1% of the fertilizer was found below a depth of 300 mm. Incorporating 9 t ha–1 of rice stubble 13 days before wheat sowing reduced net apparent mineralization of native soil N from 37 to 3 kg ha–1 between tillering and maturity. It also increased apparent denitrification of fertilizer N from an average 34 to 53 kg N ha–1 (LSD 5% = 6). N loss occurred over several months, suggesting that denitrification was maintained by continued release of metabolizable carbohydrate from the decaying rice stubble. The results demonstrate that no-till systems increase crop yield and use of both fertilizer and soil N in intensive rice-based rotations.
Keywords:Dentrification  Immobilization  Tillage  N leaching  Wheat  Wetland rice
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号