首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Survival of <Emphasis Type="Italic">Escherichia coli</Emphasis> O157:H7 in various soil particles: importance of the attached bacterial phenotype
Authors:Xing?Liu  Chunhui?Gao  Dandan?Ji  Sharon?L?Walker  Qiaoyun?Huang  Email author" target="_blank">Peng?CaiEmail author
Institution:1.State Key Laboratory of Agricultural Microbiology, College of Resources and Environment,Huazhong Agricultural University,Wuhan,China;2.Department of Chemical and Environmental Engineering,University of California,Riverside,USA
Abstract:The risk of enteropathogens to food and water is highly dependent on their survival in soil environments. Here, the effects of soil type, particle size, the presence of natural organic matter (NOM) or Fe/Al (hydro)oxides on pathogenic Escherichia coli O157:H7 survival in sterilized soil particles were assessed through survival, attachment, metabolic activity, and qRT-PCR analyses. The abundance of inoculated E. coli O157:H7 in Brown soil (Alfisol) particles increased 0.6–1.4 log10 CFU/g within 3 days (except for NOM-stripped clay), while that in Red soil (Ultisol) particles decreased rapidly in 8 days post-inoculation. Additionally, survival of bacteria was significantly enhanced when Fe/Al (hydro)oxides had been removed from Red soil particles. For the two soils, E. coli O157:H7 survived the longest in NOM-present clays and the bacterial adenosine 5′-triphosphate (ATP) levels were 0.7–2.0 times greater in clays than in sands and silts on day 8. Moreover, clays were more effective than silts and sands in binding cells and changing the expressions of acetate pathway-associated genes (pta and ackA). For silts and sands, E. coli O157:H7 decayed more rapidly in the presence of NOM and similar trends of bacterial ATP levels were observed between NOM-stripped and NOM-present soil particles, indicating that the primary role of NOM was not as a nutrient supply. These findings indicate that soil particles function mainly through attachment to change the metabolic pathway of E. coli O157:H7 and ultimately impact the survival of bacterial pathogens in soils.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号