首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Degradation of citrate promotes copper co-precipitation within aluminium-(hydr)oxides in calcareous soils
Authors:Email authorEmail author  Giovanni?Cuccovillo  Silvia?Pascazio  Carmine?Crecchio  Antonio?Lettino  Saverio?Fiore  Nicola?Tomasi  Roberto?Pinton  Tanja?Mimmo  Stefano?Cesco
Institution:1.Department of Soil, Plant and Food Sciences,University of Bari “Aldo Moro”,Bari,Italy;2.Institute of Methodologies for Environmental Analysis, C.N.R,Tito Scalo,Italy;3.Department of Agricultural and Environmental Sciences,University of Udine,Udine,Italy;4.Faculty of Science and Technology,Free University of Bolzano,Bolzano,Italy
Abstract:In this study, we provide experimental evidences that in calcareous soils microbial degradation/decomposition of citrate can promote Al-(hydr)oxide precipitation concurrently decreasing copper (Cu) solubility by a coprecipitation process. Citrate is an organic acid anion commonly released by roots to increase nutrient availability or to limit Al toxicity. However, under specific environmental conditions (i.e. high microbial activity of Al-citrate-degrading bacteria, alkaline pH), this organic acid may become ineffective in mobilizing Cu for the plant acquisition process. To demonstrate this, a calcareous soil and an artificial soil system have been treated with citrate solutions; then, changes in Al and Cu solubility and the formation of Cu-containing Al-(hydr)oxides were monitored. Both in experiments with the artificial soil and in those where the soil was inoculated with microbial strains, the formation of Cu-Al coprecipitates not only occurred but was also concurrent with the decrease of Cu and Al solubility. The role of bacteria in metal-citrate complex degradation has been assessed, and the 16S rDNA of bacteria related with these processes has been sequenced for genus identification. Bacteria belonging to Pseudomonas, Sphingomonas, Bradyrhizobium and Sphingopixis have been identified as possible candidates to degrade Al- and Cu-citrate complexes thus triggering the metal precipitation phenomena.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号