首页 | 本学科首页   官方微博 | 高级检索  
     

基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展
引用本文:黄瑾,余龙飞,李文娟,黄平. 基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展[J]. 浙江农林大学学报, 2021, 38(5): 906-915. DOI: 10.11833/j.issn.2095-0756.20210458
作者姓名:黄瑾  余龙飞  李文娟  黄平
作者单位:1.重庆交通大学 建筑与城市规划学院,重庆 4000742.中国科学院 重庆绿色智能技术研究院,重庆 4007143.中国科学院大学 重庆学院,重庆 4000204.暨南大学 地下水与地球科学研究院,广东 广州 510632
基金项目:国家自然科学基金资助项目(41771266,41401243);土壤与农业可持续发展国家重点实验室开放基金项目(Y812000005);中国科学院西部青年学者项目(202082)
摘    要:氧化亚氮(N2O)是主要的温室气体之一,并且对平流层臭氧层分解起到重要作用。土壤中N2O的产生和排放过程复杂多样,对其进行精准溯源与过程区分有助于制定减排策略。稳定同位素自然丰度技术利用N2O的同位素值δ15Nbulk(N2O中15N在整体水平上的同位素特征值)、δ18O(N2O中18O在整体水平上的同位素特征值)以及δ15Nsp(N2O分子内15N的位点特异性同位素值),可以示踪N2O来源、指示N2O产生的微生物作用途径,在N2O转化过程溯源中已取得重要进展。而同位素分馏效应是稳定同位素自然丰度技术应用的理论基础,其中微生物过程及其导致的同位素分馏是需要重点关注的问题。本研究概述了同位素分馏效应在N2O的产生、排放过程中的研究进展及其主要影响因素,梳理了同位素特征值δ15Nbulk、δ18O和δ15Nsp在分析N2O来源的研究进展,并且提出了影响准确区分过程的因素。因素包括单一产生路径的同位素特征值范围广、不同产生路径的同位素特征值范围的重叠、反应底物同位素组成的变化以及与N2O还原相关的分馏因子的可变性等问题。明确了今后需加强δ15Nsp等N2O同位素特征值分馏效应的测定,利用组合同位素特征值及先进手段进行全面的N2O溯源研究。图2参80

关 键 词:氧化亚氮   稳定同位素   硝化/反硝化作用   土壤微生物   位点特异性同位素值(δ15Nsp)   同位素分馏效应
收稿时间:2021-06-29

Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review
HUANG Jin,YU Longfei,LI Wenjuan,HUANG Ping. Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review[J]. Journal of Zhejiang A&F University, 2021, 38(5): 906-915. DOI: 10.11833/j.issn.2095-0756.20210458
Authors:HUANG Jin  YU Longfei  LI Wenjuan  HUANG Ping
Affiliation:1.College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China2.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China3.Chongqing School, University of Chinese Academy of Sciences, Chongqing 400020, China4.Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, Guangdong, China
Abstract:Nitrous oxide (N2O) is one of the potent greenhouse gases and also plays an important role in ozone layer decomposition. N2O production and emission processes in soil are complexed. Therefore, accurate source partitioning will help to constrain emission budgets. The application of stable isotope natural abundance technique have stimulated significant progress in N2O source partitioning and promoted identification in various N2O microbial production processes, which make use of various N2O isotope signatures δ15Nbulk(the average of15N), δ18O(the average of 18O) and δ15Nsp(site preference of 15N in different positions of N2O molecule). However, some factors also add uncertainties to N2O source partitioning, such as the range of isotope signatures, changes of isotope composition, and various fractionation factors associated with N2O reduction. It is also noteworthy that microbial processes and related isotopic effects are critical. In this review, the isotopic effects during N2O production and reduction and related factors are summarized; advances in approaches for N2O source-partitioning are concluded, including isotope natural abundance and isotopomer methods. The review focused on the progress of isotopic signatures δ15Nbulk, δ18O and δ15Nsp value in constraing N2O sources. In the future, the measurement of isotope fractionation, a combination of isotope signatures and advanced methodologies are advised for better studying N2O sources and pathways. [Ch, 2 fig. 80 ref.]
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号