首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of ligament fibroblast viability in ruptured cranial cruciate ligament of dogs
Authors:Hayashi Kei  Frank Joseph D  Hao Zhengling  Schamberger Gwenn M  Markel Mark D  Manley Paul A  Muir Peter
Institution:Comparative Orthopaedic Research Laboratory, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Dr, Madison, WI 53706, USA.
Abstract:OBJECTIVE: To determine fibroblast viability, assess development of apoptosis, and evaluate tissue hypoxia via histochemical, in-situ hybridization, or immunohistochemical staining in ruptured and intact cranial cruciate ligaments (CCLs) of dogs. ANIMALS: 32 dogs with ruptured CCLs, and 8 aged and 19 young dogs with intact CCLs. PROCEDURE: Markers of cell viability (lactate dehydrogenase LDH]), apoptosis (terminal deoxynucleatidyl transferase-mediated deoxyuridine triphosphate-nick end labeling TUNEL] method), and hypoxia (hypoxia-inducible factor-1alpha HIF-1alpha] monoclonal antibody) were applied to CCL specimens; positive cells were assessed objectively (LDH) and subjectively (TUNEL and HIF-1alpha) in the main axial tissue component (core) and synovial intima and subintima (epiligamentous tissue). RESULTS: Viable fibroblasts were seen in all intact and ruptured CCLs. More nonviable cells were found in the core regions of ruptured CCLs and intact CCLs of young dogs than in the epiligamentous regions. Number of nonviable cells in the core region of ruptured CCLs was greater than that in intact CCLs of young and aged dogs, whereas the number in the epiligamentous region was similar in all specimens. The TUNEL and HIF-1alpha staining was only found in the epiligamentous region of ruptured CCLs. CONCLUSIONS AND CLINICAL RELEVANCE: Ruptured CCLs contained a high number of nonviable cells but not a great number of apoptotic cells. Repair processes in the epiligamentous region of the CCL include a metabolic response to hypoxia, suggesting that necrosis of ligament fibroblasts and transformation of surviving cells to a spheroid phenotype may be a response to hypoxia cause by microinjury or inadequate blood flow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号