首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab
Authors:Andrey A Aver��yanov  Vera P Lapikova  Tatiana D Pasechnik  Tatiana S Zakharenkova  Con Jacyn Baker
Institution:1. Research Institute of Phytopathology, Russian Academy of Agricultural Sciences, B. Vyazemy, Moscow region, 143050, Russia
2. Molecular Plant Pathology Laboratory, Agricultural Research Service USDA, Beltsville, MD, 20705, USA
Abstract:Cladosporium cucumerinum spore germination in vitro depended on spore suspension density. Different fungal isolates displayed germination maxima at different spore concentrations. For one isolate, the maximum was observed at the same spore density at both 18 and 25°C, although germination percentage increased slightly at the higher temperature. Diffusates originating in other spore suspensions of the same isolate reduced germination percentage of spores taken at optimal concentration. The least effect occurred in diffusate taken from spores kept at their optimal concentration. Self-suppression of spore germination at unfavourable concentrations was diminished more or less by antioxidants (superoxide dismutase, catalase, mannitol or formate). The same compounds, added to spore diffusates, reduced their fungitoxicities. All diffusates generated superoxide radical (assayed by adrenalin oxidation sensitive to superoxide dismutase). This activity correlated positively with diffusate toxicity. Leaf inoculation of the susceptible cucumber cultivar at 18°C with spore suspensions at extreme densities, at which they germinated poorly in vitro, led to less disease severity then that at optimal density. In contrast, no disease symptoms appeared at 25°C. It is suggested that spores germinating at their extreme concentrations produced reactive oxygen species, suppressing the pathogen; this effect could reduce disease development at low temperatures. At high temperatures, however, this mechanism seems not to work, suggesting that plant infection may be reduced by other disease inhibiting factors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号