首页 | 本学科首页   官方微博 | 高级检索  
     


Interannual and seasonal changes in the soil exchange rates of monoterpenes and other VOCs in a Mediterranean shrubland
Authors:D. Asensio  J. Peñuelas  P. Prieto  M. Estiarte  I. Filella  J. Llusià
Affiliation:Unitat Ecofisiologia CSIC‐CEAB‐CREAF, Centre for Ecological Research and Forestry Applications (CREAF), Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalonia, Spain
Abstract:Information about soil VOC inventories and exchange rates in different soils is very scarce. Seasonality of soil VOC exchange rates is also largely unknown, despite the increasing interest in some soil volatile compounds, such as monoterpenes, because of their important role in soil ecology. We aimed to explore and quantify soil VOC exchange rates in a Mediterranean shrubland and their seasonality. Measurements of soil VOC exchange were taken using GC‐MS and PTR‐MS techniques, together with soil temperature, soil moisture and soil CO2 efflux measurements, during two annual campaigns with contrasting precipitation. Methanol, acetic acid, ethyl acetate, acetaldehyde, acetone, C3 and C4 carbonyls (such as methyl ethyl ketone), α‐pinene and limonene, showed the highest emission rates. Maximum soil monoterpene emission rates were very low (0.003 nmol m?2 s?1) compared with foliar monoterpene emission rates. The emission rates of the other VOCs were also low (maximum 0.8 nmol m?2 s?1) except for methanol (1.2 nmol m?2 s?1). Maximum soil uptake rates for some VOCs, such as methanol and acetonitrile (ranging from ?0.1 to ?0.5 nmol m?2 s?1) were, however, comparable with foliar uptake rates. Further studies are needed to corroborate these results and the possible importance of the soil VOC sink in regional chemistry‐climate models. Long‐term severe drought increased soil monoterpene emission rates in this Mediterranean shrubland. The increases seem to be linked to changes in the soil’s physical properties induced by low soil moisture. Unlike monoterpenes, other soil VOC emission rates decreased when soil moisture was low. The results suggest a seasonal control of soil temperature on the emission rates of monoterpenes and other VOCs. The emission rates increase with soil temperature. Positive correlations between the VOC exchange rates and the soil CO2 fluxes suggest that phenology of roots and microorganisms also controls seasonal changes in soil VOCs in this Mediterranean shrubland.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号