摘 要: | 热值是灌木生物质能源利用的重要燃烧性能参数之一。针对传统实验室检测方法破坏性大、费时费力、无法实现大量样本的快速检测问题,探讨了沙柳冠层可见-近红外光谱(Vis-NIR)结合不同化学计量学方法预测沙柳热值的精度差异。采用标准正态变量变换(SNV)、归一化数据(normalize)、标准正态变量变换+归一化数据和第二代小波变换即提升小波变换(LWT)对冠层光谱进行预处理,采用偏最小二乘法(PLS)和卷积神经网络(CNN)构建了沙柳热值可见-近红外模型。同时,对比分析了鲸鱼优化算法(WOA)、麻雀搜索算法(SSA)和灰狼优化算法(GWO)对CNN模型参数的优化效果。结果表明:当采用db4小波进行5层分解后,其对沙柳冠层可见-近红外光谱的去躁效果最好,基于LWT-WOA-CNN法构建的沙柳热值可见-近红外模型的预测精度最优,校正模型的决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)分别为0.852,0.103和2.599,RPD值较原始的PLS和CNN模型分别提高19.11%和76.80%。该研究可为沙柳生物质能源的高效、精细化利用提供技术支撑。
|