首页 | 本学科首页   官方微博 | 高级检索  
     

基于近红外光谱的神经网络预测大米直链淀粉含量
引用本文:刘建学,吴守一,方如明. 基于近红外光谱的神经网络预测大米直链淀粉含量[J]. 农业机械学报, 2001, 32(2): 55-57
作者姓名:刘建学  吴守一  方如明
作者单位:1. 洛阳工学院机械设计工程系 博士,
2. 江苏理工大学生物与环境工程学院 教授 博士生导师,
3. 江苏理工大学生物与环境工程学院 教授
摘    要:借助主成分分析,确立了用于近红外光谱分析的BP神经网络的输入输出模式对;并用BP神经网络方法建立了不同类型、不同粒度的大米样品直链淀粉含量预测模型;考察了模型的预测能力,其预测值与用标准方法取得的化学测定值间具有良好线性关系(相关系数达0.9)。用BP神经网络可降低因样品粒工的不同而对预测结果造成的差异。

关 键 词:大米 直链淀粉含量 光谱分析 神经网络 预测

Determination of Apparent Amylose Content in Rice by Neural Networks Based on Near Infrared Spectroscopy
Liu Jianxue,Wu Shouyi,Fang Ruming. Determination of Apparent Amylose Content in Rice by Neural Networks Based on Near Infrared Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 55-57
Authors:Liu Jianxue  Wu Shouyi  Fang Ruming
Affiliation:Liu Jianxue(Luoyang Institute of Technology) Wu Shouyi Fang Ruming(Jiangsu University of Science and Technology)
Abstract:The apparent amylose content (AAC) is one of the important parameters to affect the cooking and taste characteristics. The chemical measurement of rice AAC is of high expense and time consuming. So the algorithm of BP neural networks (BPNN) combined with principal component regression(PCR) using for dealing with the near infrared spectra of rice samples was presented. The principal components of near infrared spectrum data were calculated by PCR algorithm. These principal components were used as input nods of BPNN, and the prediction model of AAC in rice was built by optimizing the studying vector of BP neural networks. The correlation coefficient between the evaluation of rice AAC computed by BPNN algorithm and chemical value was 0 9. The standard error of prediction was 0 56 for milled rice, the mean relation error and the mean absolute bias were 2 0% and 1 5 respectively.
Keywords:Rice   Apparent amylose content   Spectroscopy   Neural networks   Prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号