首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林模型的苹果叶片磷素含量高光谱估测
作者单位:;1.山东农业大学资源与环境学院;2.土肥资源高效利用国家工程实验室
摘    要:【目的】针对传统化学方法测定苹果叶片磷素含量的不足,使用高光谱技术快速、准确和无损地估测苹果叶片磷素含量。【方法】以烟台栖霞市25个果园100株新梢旺长期苹果树叶片高光谱反射率和叶片磷素(phosphorus,P)含量为数据源,在分析其磷素含量与原始光谱反射率、原始光谱反射率的一阶微分、植被指数和高光谱特征参量相关性的基础上,筛选敏感波长,建立了基于高光谱数据的磷素含量随机森林模型。【结果】新梢旺长期苹果叶片磷素含量在绿光波段(507~590 nm)、红光波段(694~743 nm)和近红外短波波段(1 324~1 364 nm)呈显著负相关;基于植被指数RVI(542,1 094)、RVI(705,937)、DVI(556,712)、DVI(677,1 728)、NDVI(737,549)、DVI(FDR567,FDR1980)和DVI(FDR523,FDR1883)建立的随机森林回归模型有较好的估测效果,决定系数R2=0.923 6,均方根误差RMSE=0.015 8,相对误差RE=6.915%。【结论】光谱植被指数比较适合苹果磷素营养状况估测。

关 键 词:苹果叶片  随机森林模型  磷素含量  高光谱

Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号