首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formation of strecker aldehydes from polyphenol-derived quinones and alpha-amino acids in a nonenzymic model system
Authors:Rizzi George P
Institution:Procter & Gamble Company, Winton Hill Business Center, 6300 Center Hill Road, Cincinnati, Ohio 45224, USA. georgerizzi@prodigy.net
Abstract:Fruits and vegetables contain naturally occurring polyphenolic compounds that can undergo enzyme-catalyzed oxidation during food preparation. Many of these compounds contain catechol (1,2-dihydroxybenzene) moieties that may be transformed into o-quinone derivatives by polyphenoloxidases and molecular oxygen. Secondary reactions of the o-quinones include the Strecker degradation of ambient amino acids to form flavor-important volatile aldehydes. The purpose of this work was to investigate the mechanism of the polyphenol/o-quinone/Strecker degradation sequence in a nonenzymic model system. By using ferricyanide ion as the oxidant in pH 7.17 phosphate buffer at 22 degrees C, caffeic acid, chlorogenic acid, (+) catechin, and (-) epicatechin were caused to react with methionine and phenylalanine to produce Strecker aldehydes methional and phenylacetaldehyde in 0.032-0.42% molar yields (0.7-10 ppm in reaction mixtures). Also, by employing l-proline methyl ester in a reaction with 4-methylcatechol, a key reaction intermediate, 4-(2'-carbomethoxy-1'-pyrrolidinyl)-5-methyl-1,2-benzoquinone (7), was isolated and tentatively identified.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号