首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据挖掘分类法的农用地分等
引用本文:王 璐,田 剑,刘建敏. 基于数据挖掘分类法的农用地分等[J]. 农业工程学报, 2009, 25(8): 262-267. DOI: 10.3969/j.issn.1002-6819.2009.08.047
作者姓名:王 璐  田 剑  刘建敏
作者单位:1. 华南农业大学信息学院,广州,510642;中科院广州地球化学研究所,广州,510640
2. 合肥工业大学资源与环境工程学院,合肥,230009
基金项目:国家自然科学基金(40671145,60573115);国家星火计划(2006EA780057);华南农业大学校长基金(5600-K05165)
摘    要:应用决策树模型、BP神经网络和Logistic回归模型等分类法,对龙川县农用地分等进行了实证研究,并对各方法的分等结果有效性进行了评价,同时利用混淆矩阵探讨了样本数量对3种模型分类精度的影响。结果表明,样本数量对模型影响有差异,其中对BP神经网络和决策树模型影响较大,在较多训练样本时,模型的精度较高。在较多样本支持下,BP神经网络精度最高,但训练模型的时间较长,可解释性差;决策树模型既具有较高的精度又具有良好的可解释性;Logistic回归模型表现较差。决策树模型最适合龙川县农用地分等工作。研究结果表明,数据挖掘分类法是有效而准确的土地评价方法,有助于提高土地评价的精度和准确性,对农用地分等方法的优化具有一定的借鉴意义。

关 键 词:分类,BP,神经网络, Logistic,决策树,农用地分等
收稿时间:2009-03-26
修稿时间:2009-08-10

Farmland classification based on data mining classification method
Wang Lu,Tian Jian and Liu Jianmin. Farmland classification based on data mining classification method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 262-267. DOI: 10.3969/j.issn.1002-6819.2009.08.047
Authors:Wang Lu  Tian Jian  Liu Jianmin
Affiliation:1.College of Informatics;South China Agricultural University;Guangzhou 510642;China;2.Guangzhou Institute of Geochemistry;Chinese Academy of Sciences;Guangzhou 510640;3.School of Resources and Environment Engineering;Hefei University of Technology;Hefei 230009;China
Abstract:Decision tree, BP neural network, and logistic model were used to explored farmland classification of Longchuan Country. The effectiveness of results was analyzed. Confusion matrix was adapted to probe into accuracy of the classification. The results showed that the influences of the number of samples were different to three models. With more training samples, BP neural network and decision tree had heavier influence and higher accuracy in comparison with logistic model. Besides of three models, BP neural network had the highest accuracy and needed a longer time to train model with poor interpretation; decision tree had higher accurate and good interpretation; Logistic model performed worst, Therefore, decision tree might be the best model for farmland classification in Longchuan Country. So data mining classification is an effective and exact method for farmland evaluation, which will enhance the precision and accuracy of land evaluation, and is of significance for the optimization of farmland classification method.
Keywords:classification   BP   neural network   Logistic   decision tree   farmland classification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号