首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Remediation of PAH-contaminated soil by pulsed corona discharge plasma
Authors:Na Lu  Cuihua Wang  Cheng Lou
Institution:1.Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Institute of Electrostatics and Special Power,Dalian University of Technology,Dalian,People’s Republic of China;2.East China Sea Fisheries Research Institute,Chinese Academy of Fisheries Sciences,Shanghai,People’s Republic of China
Abstract:

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic pollutants of great environmental and health concern. PAHs are very persisted in soils and sediments which make it very difficult to remove them from soil. Therefore, remediation of PAH-contaminated sites has become an important environmental issue. The objective of this work was to study PAH degradation by pulsed corona discharge plasma system.

Materials and methods

Phenanthrene (Phe) was used as the model pollutant. The Phe-contaminated soil samples were prepared by adding appropriate amount of Phe dichlormethane solution (200 mg/L) into a given amount of pretreated soil, and Phe distributed uniformly in the soil at about 100 mg/kg. The experimental system mainly consisted of a pulse high-voltage power supply and a reactor vessel. The high-voltage electrode comprised of six stainless-steel needles and the ground electrode was a stainless-steel plate. The concentration of Phe was determined by HPLC system after being extracted out from soil. Effect of run parameters such as pulse voltage, pulse frequency, air flow rate, gas atmosphere, and initial concentration of Phe on Phe degradation was investigated, and the consumption of ozone during discharge process was also studied.

Results and discussion

The results showed that degradation efficiency of Phe (initial concentration 100 mg/kg) approached approximately 70 % after 40 min of discharge treatment under the conditions of pulse voltage 18 kV, pulse frequency 70 Hz, and air flow rate 0.8 L/min, which increased with the pulse voltage and pulse frequency due to the enhancement of input energy. An optimal air flow rate of 0.8 L/min was observed to obtain a maximum Phe degradation efficiency. Oxygen atmosphere favored Phe degradation due to high concentration of generated O-reagents, and ozone was found to act on Phe degradation. The concentration of Phe had influence on remediation capacity that increased with the amount of Phe in soil.

Conclusions

The results confirmed that pulsed corona-discharge plasma was a potential method for remediation of PAH-contaminated soil. This study offered a viable treatment option for remediation of Phe-contaminated soil, which was expected to remove PAHs other than Phe from soil with further development.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号