首页 | 本学科首页   官方微博 | 高级检索  
     


Metal uptake by wetland plants: implications for phytoremediation and restoration
Authors:Carmen Pérez-Sirvent  Carmen Hernández-Pérez  María José Martínez-Sánchez  Mari Luz García-Lorenzo  Jaume Bech
Affiliation:1.Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry,University of Murcia,Murcia,Spain;2.Department of Petrology and Geochemistry, Faculty of Geology,University Complutense of Madrid,Madrid,Spain;3.Soil Science Laboratory, Faculty of Biology,University of Barcelona (UB),Barcelona,Spain
Abstract:

Purpose

This study was undertaken to determine the feasibility of using three aquatic macrophytes, Phragmites australis, Juncus effusus and Iris pseudacorus, to phytoextract potentially toxic elements (PTEs) from a contaminated area by mining activities.

Materials and methods

An artificial pond was constructed with two topsoils (yellow and black samples) collected from Portman Bay. In order to simulate the mixing with carbonate materials, which naturally occurs in this area, a stabilisation approach was applied by mixing with 30 % of limestone filler. Three replicates of each type of soil have been prepared in pots for the selected species. The total PTEs content (arsenic, cadmium, copper, iron, lead and zinc) was determined and the bioconcentration factor (BCF) and transfer factor (TF) calculated.

Results and discussion

Soil samples showed high PTEs content as a result of mining activities. As regards the root contents, the PTEs is higher in yellow samples (YS) than in black ones, because in these samples the PTEs content that could be mobilised is higher. The BCF results were higher than unity for arsenic, copper, lead and cadmium for I. pseudacorus and P. australis growing on YS soil. Overall, copper and manganese showed a larger number of plants with BCF higher than unity. The PTEs content in leaves is low, and the TF results are lower than unity in almost all samples.

Conclusions

The results indicate that it is possible to use the selected species for phytostabilisation of soils contaminated with PTEs. J. effusus, P. australis and I. pseudacorus could be considered as tolerant, and natural or artificial wetlands containing these species could be used for remediation purposes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号