Abstract: | PurposeThe objective of this research is to find out the spatial distribution of different traffic-related contaminants in urban topsoils across a highway (125,000 vehicles per day) in the city of Moscow, Russia.Materials and methodsThe topsoils (0–3 cm depth) were sampled 1, 6, 10, 18, and 50 m perpendicular to the roadbed in three replicates 10 m apart. We analyzed total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH), heavy metals in total and phyto-available forms (HM; Cu, Zn, and Pb), and deicing salts (DS; Cl?). The TPH were extracted with carbon tetrachloride and detected by spectrometry and PAH were extracted with methylene chloride, separated by high-performance liquid chromatography, and determined by fluorescence detector. Total HM were extracted by microwave acid digestion with aqua regia and phyto-available forms were extracted by NH4OAc and determined by inductively coupled plasma mass spectrometry. The DS were analyzed using an ion liquid chromatograph with a conductometric detector.Results and discussionHeavy soil pollution was found within 1–6 m of the road. The TPH, B[a]P, and phyto-available HM concentrations exceeded permissible levels for Russia, while total HM and DS did not. The contaminant contents sharply decreased 10 m from the road. Within 10–50 m, they reached background levels, while PAH levels were elevated. We attribute this to the greater age of soils at 10–50 m than 1–6 m from the road. The different contaminant distribution patterns are attributed to their different transportation pathways: TPH, DS, and HM generally reach soils through road spray, splashes, melting snow moved from the road surface to roadsides, and aerosol sedimentation, whereas PAH are mainly transported as airborne particles and are thus able to reach more distant locations.ConclusionsTraffic-related soil pollution creates ecotoxicological and human-health risks. Distribution patterns vary by type of soil contaminant. The influence of the road on soil contamination was greatest within 10 m from the roadbed for TPH, HM, and DS and within 50 m for PAH. The increased PAH concentration levels with increased distance from the road highlights the importance of PAH monitoring in roadside soils. |