首页 | 本学科首页   官方微博 | 高级检索  
     


Water conservation potential of smart irrigation controllers on St. Augustinegrass
Authors:M.S. McCready   M.D. Dukes  G.L. Miller  
Affiliation:aAgricultural and Biological Engineering Department, University of Florida, P.O. Box 110570, Gainesville, FL 32611-0570, United States;bCrop Science Department, North Carolina State University, P.O. Box 7620, Raleigh, NC 27695-7620, United States
Abstract:A variety of technologies for reducing residential irrigation water use are available to homeowners. These “Smart Irrigation” technologies include evapotranspiration (ET)-based controllers and soil moisture sensor (SMS) controllers. The purpose of this research was to evaluate the effectiveness of these technologies, along with rain sensors, based on irrigation applied and turfgrass quality measurements on St. Augustinegrass (Stenotaphrum secundatum (Walter) Kuntze). Testing was performed on two types of SMS controllers (LawnLogic LL1004 and Acclima Digital TDT RS500) at three soil moisture threshold settings. Mini-Clik rain sensors (RS) comprised six treatments at two rainfall thresholds (3 mm and 6 mm) and three different irrigation frequencies (1, 2, and 7 d/wk). Two ET controllers were also tested, the Toro Intelli-Sense controller and the Rain Bird ET Manager. A time-based treatment with 2 days of irrigation per week without any type of sensor (WOS) to bypass irrigation was established as a comparison. All irrigation controller programming represented settings that might be used in residential/commercial landscapes. Even though three of the four testing periods were relatively dry, all of the technologies tested managed to reduce water application compared to the WOS treatment, with most treatments also producing acceptable turf quality. Reductions in irrigation applied were as follows: 7–30% for RS-based treatments, 0–74% for SMS-based treatments, and 25–62% for ET-based treatments. The SMS treatments at low threshold settings resulted in high water savings, but reduced turf quality to unacceptable levels. The medium threshold setting (approximately field capacity) SMS-based treatment produced good turfgrass quality while reducing irrigation water use compared to WOS by 11–53%. ET controllers with comparable settings and good turf quality had −20% to 59% savings. Reducing the irrigation schedule (treatment DWRS) by 40% and using a rain sensor produced water savings between 36% and 53% similar to smart controllers. Proper installation and programming of each of the technologies was essential element to balancing water conservation and acceptable turf quality. Water savings with the SMS controllers could have been increased with a reduced time-based irrigation schedule. Efficiency settings of 100% (DWRS) and 95% (TORO) did not reduce turf quality below acceptable limits and resulted in substantial irrigation savings, indicating that efficiency values need not be low in well designed and maintained irrigation systems. For most conditions in Florida, the DWRS schedule (60% of schedule used for SMS treatments) can be used with either rain sensors or soil moisture sensors in bypass control mode as long as the irrigation system has good coverage and is in good repair.
Keywords:Soil moisture sensor   Rain sensor   Evapotranspiration controller   Turfgrass
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号