摘 要: | 首先利用Landsat8 OLI和GF-1 WFV卫星的多光谱影像分别对新疆阿勒泰科克苏湿地的离散水体进行支持向量机模型分类和最大似然模型分类,以选出最佳的分类模型;然后对Landsat8 OLI和GF-1 WFV影像分别提取灰度共生矩阵纹理特征、Getis指数特征和Moran’I指数特征,并与其对应的多光谱影像进行组合得到包括原始多光谱影像在内的7种组合特征集,利用选出的最佳分类模型对特征集进行离散水体提取,对其精度检验结果进行对比。结果表明,对Landsat8 OLI和GF-1 WFV卫星的多光谱影像同时引入Getis指数特征和灰度共生矩阵纹理特征能够明显提高分类精度,Landsat8 OLI影像Kappa系数从0.815 7提高到0.922 3,总体精度从94.25%提高到97.50%;GF-1 WFV影像的Kappa系数从0.832 6提高到0.932 4,总体精度从94.75%提高到98.25%。综合可知,Getis指数和灰度共生矩阵同时作为新的特征波段引入到多光谱影像上,对于离散水体信息提取具有积极效果。
|