首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First insights into insecticidal activity against Aedes aegypti and partial biochemical characterization of a novel low molecular mass chymotrypsin‐trypsin inhibitor purified from Lonchocarpus sericeus seeds
Authors:Luiz CP Almeida Filho  Pedro MS Tabosa  Denise C Hissa  Ilka M Vasconcelos  Ana FU Carvalho
Institution:1. Federal University of Ceará, Biochemistry and Molecular Biology Department, Fortaleza, Ceará, Brazil;2. Federal University of Ceará, Biology Department, Fortaleza, Ceará, Brazil
Abstract:

BACKGROUND

Arboviroses such as dengue, Zika and chikungunya represent a serious public health issue as a consequence of the absence of approved vaccines or specific antiviral drugs against the arboviruses that cause them. One way to prevent these diseases is by combating the vector mosquito, Aedes aegypti (Diptera), which has serine proteases in the midgut. Protease inhibitors are molecules that can block enzyme activity, impairing digestion and nutrition, which can lead to death. Thus, we purified and characterized a novel chymotrypsin‐trypsin inhibitor (LsCTI) from Lonchocarpus sericeus seeds and investigated its effect upon Ae. aegypti egg hatching, larval development and digestive proteases.

RESULTS

LsCTI showed a single protein band in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS‐PAGE), and the molecular mass determined by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) was 8870.45 Da. Kinetics analyses revealed a noncompetitive type of inhibition and low inhibition constant (Ki) for chymotrypsin (8.24 x 10‐8 m ). The thermal resistance was remarkable, even at 100 °C for 180 min. The inhibitor concentration required for 50‐percent enzyme inhibition (IC50) of LsCTI was 4.7 x 10‐7 m for Ae. aegypti midgut larval enzymes. LsCTI did not affect egg hatchability at 0.3 mg mL‐1, but caused a high larval mortality rate (77%) and delayed development (37%).

CONCLUSIONS

LsCTI is a novel protease inhibitor with remarkable biochemical characteristics and is a potential tool to control Ae. aegypti development. © 2017 Society of Chemical Industry
Keywords:chymotrypsin inhibitor  Lonchocarpus  legume seeds  dengue  zika  midgut enzymes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号