首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature and Chemical Changes During Composting of Broiler Litter
Authors:Robert P Flynn  CW Wood
Institution:1. Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, New Mexico;2. Department of Agronomy and Soils, Auburn University, Auburn, Alabama
Abstract:Composting broiler litter (a mixture of manure, bedding material, and wasted feed) with commonly available high-C substrates may be a viable alternative to reduce current land disposal practices for litter. Broiler litter with wood shavings as a bedding material and broiler litter with peanut hulls as a bedding material were composted with wheat straw, peanut hulls, pine bark and paper mill sludge in 0.33 m3 batch reactors. Litters and C substrates were mixed to achieve C:N ratios of approximately 30:1. Dry weight, total N, total C, temperature, electrical conductivity and pH were determined at regular intervals. Maximum temperatures peaked near 70°C within 2.25 d after mixing peanut hulls with litter and within 2.58 d for pine bark and litter. Composts made from paper mill sludge approached 50°C within 3.71 d. Wheat straw composts never exceeded 40°C which could present potential health problems associated with pathogenic microorganisms. Mass loss and C:N ratio gradually declined and stabilized approximately 84 d after mixing. Mass loss averaged 73 percent for wheat straw compost, 33 percent for peanut hull composts, and 16 percent for the other mixes. Wheat straw compost C:N ratios stabilized near 14:1 and other mixes remained above 20:1, indicating N limited conditions for complete composting. Compost pH was 5.8 after 84 d from pine bark composted with wood shaving litter and was significantly lower than pH from paper mill sludge compost with an average pH of 6.9 but similar to all other compost mixes (pH 6.7). Electrical conductivity ranged from 0.35 S m?1 for paper mill sludge composted with wood shaving litter to 0.91 S m?1 from wheat straw composted with peanut hull litter. Composting temperature varied considerably among C sources and all required at least 72 d of curing to stabilize the C:N ratio. Composts made from wheat straw were most effective for waste reduction but temperatures were below the 50°C level generally considered necessary to kill pathogens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号