基于图像纹理特征的土鸡蛋微裂纹无损检测 |
| |
引用本文: | 魏萱,何金成,郑书河,叶大鹏. 基于图像纹理特征的土鸡蛋微裂纹无损检测[J]. 福建农林大学学报(自然科学版), 2017, 0(6): 716-720. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2017.06.019 |
| |
作者姓名: | 魏萱 何金成 郑书河 叶大鹏 |
| |
基金项目: | 福建省自然科学基金资助项目,福建农林大学现代农林装备及其自动化创新平台 |
| |
摘 要: | 为了提高土鸡蛋表面微裂纹检测的准确度和效率,提出一种基于图像纹理特征的土鸡蛋微小裂纹无损检测方法.利用工业相机对150枚土鸡蛋采集数字图像,采用高斯滤波、灰度变换等方法对土鸡蛋图像进行预处理;利用灰度共生矩阵进一步提取图像纹理特征,将纹理特征参数作为不同分类器包括簇类独立软模式法、线性判别分析(linear discriminant analysis,LDA)和偏最小二乘支持向量机输入,进行土鸡蛋有无裂纹判别.结果表明,采用图像纹理特征参数建立的土鸡蛋有无裂纹LDA模型判别准确度最高,达到96.0%.
|
Nondestructive method to detect small crack of native egg based on image textural feature |
| |
Abstract: | In order to improve the detection accuracy and efficiency for shell small crack of native egg, a method based on textural feature of images was proposed. Digital image was obtained by industrial camera and then preprocessed by Gauss filtering and gray-scale transformation. After that, textural feature of images was extracted based on gray level co-occurrence matrix (GLCM). For crack identification, textural feature parameters were used as classifier input which included soft independent modeling of class anal-ogy ( SIMCA) , linear discriminant analysis ( LDA) and least squares support vector machine ( LS-SVM) . The results showed that LDA model achieved the best correct classification rate ( CCR) at 96%. |
| |
Keywords: | |
本文献已被 CNKI 万方数据 等数据库收录! |
|