首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像纹理特征的土鸡蛋微裂纹无损检测
引用本文:魏萱,何金成,郑书河,叶大鹏. 基于图像纹理特征的土鸡蛋微裂纹无损检测[J]. 福建农林大学学报(自然科学版), 2017, 0(6): 716-720. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2017.06.019
作者姓名:魏萱  何金成  郑书河  叶大鹏
基金项目:福建省自然科学基金资助项目,福建农林大学现代农林装备及其自动化创新平台
摘    要:为了提高土鸡蛋表面微裂纹检测的准确度和效率,提出一种基于图像纹理特征的土鸡蛋微小裂纹无损检测方法.利用工业相机对150枚土鸡蛋采集数字图像,采用高斯滤波、灰度变换等方法对土鸡蛋图像进行预处理;利用灰度共生矩阵进一步提取图像纹理特征,将纹理特征参数作为不同分类器包括簇类独立软模式法、线性判别分析(linear discriminant analysis,LDA)和偏最小二乘支持向量机输入,进行土鸡蛋有无裂纹判别.结果表明,采用图像纹理特征参数建立的土鸡蛋有无裂纹LDA模型判别准确度最高,达到96.0%.


Nondestructive method to detect small crack of native egg based on image textural feature
Abstract:In order to improve the detection accuracy and efficiency for shell small crack of native egg, a method based on textural feature of images was proposed. Digital image was obtained by industrial camera and then preprocessed by Gauss filtering and gray-scale transformation. After that, textural feature of images was extracted based on gray level co-occurrence matrix (GLCM). For crack identification, textural feature parameters were used as classifier input which included soft independent modeling of class anal-ogy ( SIMCA) , linear discriminant analysis ( LDA) and least squares support vector machine ( LS-SVM) . The results showed that LDA model achieved the best correct classification rate ( CCR) at 96%.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号