首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genetic basis for GPI-anchor merozoite surface antigen polymorphism of Babesia and resulting antigenic diversity
Authors:Carcy Bernard  Précigout Eric  Schetters Theo  Gorenflot André
Institution:Laboratoire de Biologie Cellulaire et Moléculaire, EA MESR 2413, ERT 1038 Vaccination antiparasitaire, UFR des Sciences Pharmaceutiques et Biologiques, BP 14491, F-34093 Montpellier Cedex 5, France. bcarcy@ww3.pharma.univ-montp1.fr
Abstract:Glycosyl-phosphatidylinositol anchor merozoite surface antigens (GPI-anchor MSA) are proposed to act in the invasion process of infective merozoites of Babesia into host erythrocytes. Because of their essential function in the survival of Babesia parasites, they constitute good candidates for the development of vaccines against babesiosis and they have been extensively analyzed. These include Babesia bovis variable MSA (VMSA) and Babesia bigemina gp45/gp55 proteins of the agents of bovine babesiosis from tropical and subtropical countries, and the Babesia divergens Bd37 and Babesia canis Bc28 proteins of the main agents of bovine and canine babesiosis in Europe, respectively. However, these are very polymorphic antigens and Babesia parasites have evolved molecular mechanisms that enable these antigens to evade the host immune system as a survival strategy. This review focuses on the genetic basis of GPI-anchor MSA polymorphism and the antigenic diversity of B-cell epitopes that might be generated in each of these Babesia species. The picture is incomplete and no Babesia genome sequence is yet available. However, the available sequences suggest that two distinct, non cross-reactive GPI-anchor MSA (i.e., with unique B-cell epitopes) may be required by all Babesia species for invasion, and that these two distinct GPI-anchor MSA would be encoded by a multigene family. Furthermore, the data are consistent with the ability of biological clones from Babesia to use these multigene families for the expression of GPI-anchor MSA, either conserved (B. canis and B. bovis) or polymorphic (B. divergens and B. bigemina) in their amino acid sequence. Moreover, as a consequence for successful parasitism, the data suggest that both conserved and polymorphic GPI-anchor MSA would present unique B-cell epitopes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号