首页 | 本学科首页   官方微博 | 高级检索  
     


Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres
Authors:Joshua Chou  Jia Hao  Shinji Kuroda  David Bishop  Besim Ben-Nissan  Bruce Milthorpe  Makoto Otsuka
Affiliation:1.Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishitokyo-Shi, Tokyo 202-8585, Japan; E-Mail: ;2.Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, Sydney, NSW 2007, Australia; E-Mails: (D.B.); (B.B.-N.); (B.M.);3.Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; E-Mails: (J.H.); (S.K.)
Abstract:Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP) as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair.
Keywords:biomimetic   zinc-tricalcium phosphate   foraminifera   bone defect   bone regeneration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号