首页 | 本学科首页   官方微博 | 高级检索  
     

耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响
引用本文:姜英,王峥宇,廉宏利,王美佳,苏业涵,田平,隋鹏祥,马梓淇,王英俨,孟广鑫,孙悦,李从锋,齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响[J]. 中国农业科学, 2020, 53(15): 3071-3082. DOI: 10.3864/j.issn.0578-1752.2020.15.008
作者姓名:姜英  王峥宇  廉宏利  王美佳  苏业涵  田平  隋鹏祥  马梓淇  王英俨  孟广鑫  孙悦  李从锋  齐华
作者单位:1沈阳农业大学农学院,沈阳 1108662中国农业科学院作物科学研究所,北京 100081
基金项目:国家重点研发计划(2016YFD0300103);国家自然科学基金(31901471);辽宁省科学技术计划(2019JH2/10200004)
摘    要:【目的】针对东北春玉米主产区秸秆处理的突出矛盾,优化秸秆还田方式对促进该区农业绿色可持续发展意义深远。本文研究了耕作和秸秆还田方式对春玉米根系形态及分布特征、干物积累和产量的影响,旨在为该区域耕作措施调整、实现秸秆还田维持耕地农业生产提供理论依据。【方法】2017—2018年在辽宁沈阳进行田间试验,采用二因素随机区组设计,分别设置秸秆全层翻耕还田(PTS)、秸秆条带翻耕还田(PSS)、秸秆全层旋耕还田(RTS)和秸秆条带旋耕还田(RSS)4个处理。分析不同耕作和秸秆还田方式下春玉米根长、根干重及其空间分布、植株地上部干物质积累动态和产量性状的差异。【结果】耕作和秸秆还田方式对吐丝期春玉米根长及其分布、根干重和比根长影响显著。在0—30 cm垂直土层,PTS处理根长2017年和2018年分别高出其他处理7.9%—43.2%和17.3%—41.5%;在30—60 cm垂直土层,秸秆条带还田(PSS和RSS处理)根长较秸秆全层还田(PTS和RTS处理)平均高出20.1%和20.3%;以植株为中心,PTS处理距植株0—10 cm的根长分布最高,RTS处理最低。根干重在0—10 cm土层表现为R...

关 键 词:秸秆还田  春玉米  根系分布  籽粒产量
收稿时间:2020-04-09

Effects of Tillage and Straw Incorporation Method on Root Trait at Silking Stage and Grain Yield of Spring Maize in Northeast China
JIANG Ying,WANG ZhengYu,LIAN HongLi,WANG MeiJia,SU YeHan,TIAN Ping,SUI PengXiang,MA ZiQi,WANG YingYan,MENG GuangXin,SUN Yue,LI CongFeng,QI Hua. Effects of Tillage and Straw Incorporation Method on Root Trait at Silking Stage and Grain Yield of Spring Maize in Northeast China[J]. Scientia Agricultura Sinica, 2020, 53(15): 3071-3082. DOI: 10.3864/j.issn.0578-1752.2020.15.008
Authors:JIANG Ying  WANG ZhengYu  LIAN HongLi  WANG MeiJia  SU YeHan  TIAN Ping  SUI PengXiang  MA ZiQi  WANG YingYan  MENG GuangXin  SUN Yue  LI CongFeng  QI Hua
Affiliation:1College of Agronomy, Shenyang Agricultural University, Shenyang 1108662Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
Abstract:【Objective】In view of the prominent contradiction of straw utility, the optimization of straw returning method is significant for promoting the green and sustainable development of agriculture in northeast China, where is the main production areas of spring maize. In this study, the effects of tillage and straw incorporation approaches on the morphology and distribution characteristics of root, dry matter accumulation and yield of spring maize were investigated to provide a theory basis for optimizing tillage and straw incorporation measures to maintain agricultural production.【Method】The field experiment was carried out in Shenyang, Liaoning province in 2017 and 2018. The two-factor random zone group design was adopted to set up four treatments, including straw incorporation with full-thickness plough tillage (PTS), straw incorporation with strip plough tillage (PSS), straw incorporation with full-thickness rotary tillage (RTS), and straw incorporation with strip rotary tillage (RSS). Under different tillage and straw incorporation methods, the differences of root length, root dry weight, their spatial distribution in soil, dry matter accumulation dynamics and yield characters of spring maize were analyzed.【Result】Tillage and straw incorporation methods had significant effects on root length and distribution as well as dry weight and specific root length of spring maize at silking stage. In the vertical soil layer of 0-30 cm, the root length of PTS treatment was 7.9%-43.2% and 17.3%-41.5% higher than other treatments, respectively. In the vertical soil layer of 30-60 cm, root length under strip straw incorporation (PSS and RSS) treatments was average 20.1% and 20.3% higher than those under full-thickness straw incorporation (PTS and RTS) treatments, respectively. Centering on maize plant, the horizontal distribution of root length in soil showed that PTS treatment was the highest and RTS treatment was the lowest in 0-10 cm away from the plant. The lowest root dry weight was observed from RTS treatment, PTS, PSS and RSS treatments presented 36.5%, 59.6% and 17.3% higher root dry weight in the 0-10 cm soil layer, respectively. PTS treatment obtained the highest specific root length in 0-20 cm soil layers, with 8.7%-73.8% and 14.3%-44.7% more than those under other treatments. The spatial distribution of root surface area was significantly different among treatments. PTS and RSS treatments had higher root surface area in 0-30 cm soil layer and better root surface distribution in horizontal and vertical directions. The effects of tillage and straw incorporation methods on the accumulation of dry matter in shoot of spring maize at jointing, silking and maturity stages were significant. Compared with other three treatments, RTS reduced the average dry matter weight of stem+sheath and total shoot weight by 15.5% to 19.2% at jointing stage. The weight of ear and shoot dry matter in maturity stage under PTS treatment was 3.6%-12.3% and 2.7%-12.4% higher than those under other treatments, followed by PSS and RSS treatments, and RTS treatment was the lowest. Tillage and straw incorporation methods significantly affected the number of ears and grain yield of spring maize. PTS, PSS, and RSS treatments obtained average 8.3%, 7.9%, and 5.8% higher grain yield than that under RTS treatments in 2017 and 2018. RTS significantly reduced the number of ears by 2.9%-9.1% and 7.0%-9.7%, compared with other three treatments.【Conclusion】Proper tillage and straw returning methods were conducive to promoting the morphological development of crop root and its spatial distribution in the tilled soil layer, optimizing of dry matter accumulation and distribution characteristics, and the distribution of dry matter to ear at maturity, so as to increase the yield of spring maize. In summary, the straw strip returning with plough tillage was recommended in the study area.
Keywords:straw incorporation  spring maize  root distribution  grain yield  
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号