首页 | 本学科首页   官方微博 | 高级检索  
     

不同波长选择方法在土壤有机质含量检测中对比研究
引用本文:程介虹,陈争光,张庆华. 不同波长选择方法在土壤有机质含量检测中对比研究[J]. 中国农业科技导报, 2020, 22(1): 162-170. DOI: 10.13304/j.nykjdb.2019.0153
作者姓名:程介虹  陈争光  张庆华
作者单位:1.黑龙江八一农垦大学电气与信息学院, 黑龙江 大庆 163319; 2.大庆技师学院计算机工程系, 黑龙江 大庆 163524
基金项目:国家重点研发计划项目(2016YFD0701300);黑龙江八一农垦大学人才培育计划项目(ZRCPY201913)。
摘    要:由于近红外光谱数据的多重共线性,特征波长选择一直是近红外光谱分析技术的重要研究内容。以108个土壤样本光谱数据和土壤有机质(SOM)含量为研究对象,以连续投影算法(SPA)、间隔偏最小二乘法(IPLS)、竞争自适应重加权采样法(CARS)三种典型的特征波长选择算法进行近红外光谱波长选择和土壤有机质含量建模。研究结果表明,基于上述三种方法提取的特征波长所建立的模型预测能力均优于全谱模型。其中,基于SPA算法的MLR预测模型精度最优,预测集相关系数(Rp)和均方根误差(RMSEP)分别为0970 2和1.214 4,模型参数只有6个。因此,SPA-MLR可以有效地应用近红外光谱的建模,并且简化模型的复杂度,提高模型的计算效率。

关 键 词:特征波长  近红外光谱  土壤有机质  
收稿时间:2019-03-01

Comparison of Different Wavelength Selection Methods in SOM Content Detection
CHENG Jiehong,CHEN Zhengguang,ZHANG Qinghua. Comparison of Different Wavelength Selection Methods in SOM Content Detection[J]. Journal of Agricultural Science and Technology, 2020, 22(1): 162-170. DOI: 10.13304/j.nykjdb.2019.0153
Authors:CHENG Jiehong  CHEN Zhengguang  ZHANG Qinghua
Affiliation:1.College of Electrical and information, Heilongjiang Bayi Agricultural University, Heilongjiang Daqing 163319, China; 2.Department of Computer Engineering, Daqing Technician College, Heilongjiang Daqing 163524, China
Abstract:Because of the multicollinearity of near-infrared spectroscopy data, the selection of characteristic wavelength has been an important research for near-infrared spectroscopy analysis technology. Based on spectral data and the content of soil organic matter (SOM) of 108 soil samples, this paper used three typical characteristics wavelength selection algorithm, the successive projections algorithm (SPA), interval partial least squares (IPLS), competitive adaptive reweighted sampling (CARS), for wavelength selection of near-infrared spectroscopy and modeling of soil organic matter content. The results showed that the model based on the characteristic wavelength extracted by the three methods above had better prediction ability than that of the full-spectrum model. Among them, the accuracy of the MLR prediction model based on SPA algorithm was the best, and the correlation coefficient (Rp) and root mean square error (RMSEP) of the prediction set were 0.970 2 and 1.214 4, respectively, with only 6 model parameters. Therefore, SPA-MLR could effectively apply near-infrared spectroscopy modeling, simplify the complexity of the model, and improve the computational efficiency of the model.
Keywords:characteristic wavelength  near-infrared spectroscopy  soil organic matter  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农业科技导报》浏览原始摘要信息
点击此处可从《中国农业科技导报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号