Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter |
| |
Authors: | Taneda Haruhiko Tateno Masaki |
| |
Affiliation: | Department of Biology, Graduate School of Science, Osaka University, 1-1 Matikaneyama, Toyonaka, Osaka 560-0043, Japan. |
| |
Abstract: | To confirm that freeze-thaw embolism is a primary stress for evergreen woody species in winter, hydraulic conductivity, photosynthesis and leaf water potential were measured during fall and winter in trees growing in a cool temperate zone (Nikko) and in a warm temperate zone (Tokyo). We examined two evergreen conifers that naturally occur in the cool temperate zone (Abies firma Siebold & Zucc. and Abies homolepis Siebold & Zucc.), and four evergreen broad-leaved woody species that are restricted to the warm temperate zone (Camellia japonica L., Cinnamomum camphora (L.) J. Presl, Ilex crenata Thunb. and Quercus myrsinaefolia Blume). In Tokyo, where no freeze-thaw cycles of xylem sap occurred, hydraulic conductivity, photosynthesis and water balance remained constant during the experimental period. In Nikko, where there were 38 daily freeze-thaw cycles by February, neither of the tracheid-bearing evergreen conifers showed xylem embolism or leaf water deficits. Similarly, the broad-leaved evergreen trees with small-diameter vessels did not exhibit severe embolism or water deficits and maintained CO(2) assimilation even in January. In contrast, the two broad-leaved evergreen trees with large-diameter vessels showed significantly reduced hydraulic conductivity and shoot die-back in winter. We conclude that freeze-thaw embolism restricts evergreen woody species with large-diameter vessels to the warm temperate zone, whereas other stresses limit the distribution of broad-leaved trees, that have small-diameter vessels, but which are restricted to the warm temperate zone. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|