首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying habitat specificity to assess the contribution of a patch to species richness at a landscape scale
Authors:Wagner  Helene H  Edwards  Peter J
Institution:(1) Nature and Landscape Conservation Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland;(2) Geobotanical Institute, Swiss Federal Institute of Technology (ETH), 8092, Zürich, Switzerland
Abstract:Assessing and predicting the species richness of a complex landscape remains a problem because there is no simple scaling function of species richness in a heterogeneous environment. Furthermore, the potential value of an area for biodiversity conservation may depend on which, rather than how many, species the area contains. This paper shows how we can objectively evaluate the contribution of an area, e.g., a habitat patch, to larger-scale plant species richness, e.g., a landscape composed of patches of several habitat types, and how we can test hypotheses that attempt to explain this contribution. We quantified the concept of habitat specificity to assess the proportion of each observed plant population that is concentrated within a given spatial element. A case study of a biodiversity-monitoring program in the Swiss Canton of Aargau showed that the relative contribution of the three main types of land use to the overall species richness differed strongly between higher taxa (vascular plants and molluscs). However, the type of data, i.e., presence-absence or abundance, was not important. Resampling of the plant data suggested that stratification provided an unbiased estimate of relative specificity, whereas unstratified sampling caused bias even for large samples. In a second case study of vascular plants in an agricultural landscape in central Switzerland, we tested whether the type, size or shape of a landscape element can predict its contribution to the species richness of the landscape. Habitat types that were less frequently disturbed contributed more per m2 to landscape species richness than more frequently disturbed ones. Contrary to expectation, patch size was negatively correlated to specificity per m2 for arable fields, whereas patch shape appeared to be unrelated to the specificity per m2 both for arable fields and for meadows. The specificity approach provides a solution to the problem of scaling species richness and is ideally suited for testing hypotheses on the effect of landscape structure on landscape species richness. Specificity scores can easily be combined with measures of other aspects of rarity to assess the contribution of a spatial element to conservation goals formulated at regional, national or global level.
Keywords:conservation value  habitat specificity  landscape structure  land-use  rarity scaling  species richness
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号