基于深度神经网络的芯片上活体虫黄藻检测 |
| |
引用本文: | 周诗正,陈琳,颜洪,傅鹏程. 基于深度神经网络的芯片上活体虫黄藻检测[J]. 热带生物学报, 2022, 13(5): 451-456. DOI: 10.15886/j.cnki.rdswxb.2022.05.004 |
| |
作者姓名: | 周诗正 陈琳 颜洪 傅鹏程 |
| |
作者单位: | 海南大学 南海海洋资源利用国家重点实验室,海口 570100 |
| |
基金项目: | 海南大学科研启动基金(KYQD_ZR2017271) |
| |
摘 要: | 为了对活体虫黄藻进行快速、无标签和低成本的检测,笔者结合微流控技术、显微图像处理和深度学习神经网络,提出了基于深度神经网络的活体虫黄藻检测方法,对混合了微球、正常与漂白虫黄藻细胞溶液进行检测,结果表明:使用明场显微图像进行训练的神经网络模型泛化至微流控芯片上细胞检测当中,且能以93.9%的平均识别精确度识别不同生理状态下的虫黄藻细胞与其他目标,说明该方法可从大量复杂、异质的细胞群体中快速准确地识别出目标细胞。
|
关 键 词: | 神经网络 虫黄藻 微流控芯片 计算机视觉 共生微藻 |
收稿时间: | 2021-12-06 |
A deep neural network-based method for on-chip detection of in vivo Symbiodinium |
| |
Affiliation: | State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou Hainan, 570100, China |
| |
Abstract: | Measuring the species and density of Symbiodinium is important for predicting coral bleaching. At present, the rapid detection method of microalgae cells has great limitations. Manual microscopic inspection is time-consuming and laborious, while benchtop automated instruments are not suitable for large-scale real-time detection during field sampling. This research combines microfluidics, microscopic image processing and a deep learning neural network to proposes a deep neural network-based method for the microfluidic detection of in vivo Symbiodinium. The results of the detection of solution samples mixed with polymethylmethacrylate microspheres, normal and bleached methanogens cells show the neural network model trained using bright-field microscopic images is generalized to microfluidic on-chip cell detection, and is able to identify different physiological states of Symbiodinium cells and other objects with an average precision of 93.9%, demonstrating the feasibility, accuracy and sensitivity of the method. |
| |
Keywords: | |
|
| 点击此处可从《热带生物学报》浏览原始摘要信息 |
|
点击此处可从《热带生物学报》下载免费的PDF全文 |
|