PurposeSoil amendment with biochar can result in decreased bulk density and soil penetration resistance, and increased water-holding capacity. We hypothesized that adding biochar could moderate the reductions in infiltration rates (IR) that occur during high-intensity rainstorms in seal-prone soils, and hence result in reduced runoff and erosion rates. The objectives were to (i) evaluate biochar potential to improve infiltration and control soil erosion, and (ii) investigate the mechanisms by which biochar influences infiltration rate and soil loss.Materials and methodsRainfall simulation experiments were conducted on two physicochemically contrasting, agriculturally significant, erosion-prone soils of Israel that are candidates for biochar amendment: (i) non-calcareous loamy sand, and (ii) calcareous loam. Biochar produced from mixed wood sievings from wood chip production at a highest treatment temperature of 620 °C was used as the amendment at concentrations from 0 to 2 wt%.Results and discussionIn the non-calcareous loamy sand, 2 % biochar was found to significantly increase final IR (FIR) by 1.7 times, and significantly reduce soil loss by 3.6 times, compared with the 0 % biochar control. These effects persisted throughout a second rainfall simulation, and were attributed to an increase in soil solution Ca and decrease in Na, and a subsequently decreased sodium adsorption ratio (SAR). In the calcareous loam, biochar addition had no significant effect on FIR but did reduce soil loss by 1.3 times. There were no biochar-related chemical changes in the soil solution of the calcareous loam, which corresponds to the lack of biochar impact on FIR. Surface roughness of the calcareous loam increased as a result of accumulation of coarse biochar particles, which is consistent with decreased soil loss.ConclusionsThese results confirm that biochar addition may be a tool for soil conservation in arid and semi-arid zone soils. |