首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heavy metal distribution and electrical conductivity measurements in biosolid pellets
Authors:Manuel M Jordán  Beatriz Rincón-Mora  María Belén Almendro-Candel
Institution:1.Department of Agrochemistry and the Environment,Miguel Hernández University of Elche,Elche,Spain
Abstract:

Purpose

Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to strict controls within the European Union. Today, the use of biosolids to improve the nutrient content in a soil is a common practice. The present research was conducted to determine electrical conductivity in biosolid pellets (dry wastes) using an innovative methodology. On the other hand, the present study was designed to examine the partition of selected heavy metals in biosolid pellets and also to relate the distribution patterns of these metals.

Materials and methods

In this context, heavy metal concentrations were studied in biosolid pellets under different pressures. Electrical conductivity measurements were taken in biosolid pellets under pressures on the order of 50 to 150 MPa and with currents of 10?15 A. Measurements of electrical conductivity and heavy metal content for different areas (H1, H2, and H3) were taken. Total content of metals was determined following microwave digestion and analysed by inductively coupled plasma mass spectrometry (ICP/MS). Triplicate portions were weighed in polycarbonate centrifuge tubes and sequentially extracted.

Results and discussion

The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate-bound, oxidizable, reducible, and residual forms. The residual, reducible, and carbonate-sorbed forms were dominant. Higher Cr and Ni content were detected in pellets made with biosolids from the H3 horizon. The highest Cd and Ni values were detected in the H2 horizon.

Conclusions

The trends of the conductivity curves were similar for the sludge from the isolation surface horizon (H1) and for the horizon in the mesophilous area (H2). In the case of the horizon in the thermophilous area (H3), the electrical conductivity showed extremely high values. This behaviour was similar in the case of the Cr and Ni content. However, in the case of Cd and Pb, the highest values were detected in the H2 horizon. This experiment could be useful for establishing a general rule for taking measurements of electrical conductivity and heavy metals in biosolid pellets and other types of dry wastes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号