首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phosphate adsorption on uncoated and humic acid-coated iron oxides
Authors:Hui Wang  Jun Zhu  Qingling Fu  Can Hong  Hongqing Hu  Antonio Violante
Institution:1.Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment,Huazhong Agricultural University,Wuhan,China;2.Soil and Fertilizer Research Institute,Anhui Academy of Agricultural Sciences,Hefei,China;3.Department of Soil, Plant, Environment and Animal Production Science, Faculty of Agriculture,University of Naples “Federico II”,Portici Naples,Italy
Abstract:

Purpose

The phosphate adsorption on natural adsorbents is of particular importance in regulating the transport and bioavailability of phosphates in environmental system. In soils, oxides are often associated with organic matter and form mineral-organic complexes. The aim of the present paper was to investigate the mechanisms of phosphate adsorption on these complexes.

Materials and methods

Phosphate adsorption on uncoated and humic acid (HA)-coated iron oxide complexes was investigated at different ionic strengths and pH by isotherm experiments and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

Results and discussion

Results showed that HA-coated iron oxide complexes caused a decrease in the specific surface area (SSA) and the isoelectric point (IEP) of oxides. Phosphate adsorption on iron oxides was insensitive to changes of ionic strength, while it increased on the complexes with increasing ionic strength. The presence of HA decreased the maximum adsorption and the affinity of phosphate on the complexes. The zeta potential of phosphate-bound iron oxides linearly reduced with the increment of phosphate surface coverage, while the zeta potential of complexes with adsorbed phosphate kept at the same level. ATR-FTIR analysis suggested the formation of phosphate-metal complexation. The presence of HA promotes the formation of the monodentate phosphate complexes at pH 4.5 and significantly influenced phosphate species at pH 8.5.

Conclusions

The amount of phosphate adsorbed was reduced, and the phosphate speciation was also influenced when phosphate was adsorbed on HA-coated iron oxide complexes compared with phosphate adsorption on pure goethite and hematite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号