摘 要: | 【目的】选取云南省陆良县,开展基于Landsat-8 OLI和Sentinel-2A MSI影像的设施种植区域监测研究,及时为农业生产管理提供准确的设施农业空间信息。【方法】首先分析日光温室及其他典型地物的遥感特征,然后使用目视解译以及最小距离法、马氏距离法、最大似然法、支持向量机等4种监督分类方法提取设施种植空间信息,再使用亚米级Google earth历史影像为底图建立验证样区。通过目视解译提取样区设施种植区域信息,以此验证Landsat-8和Sentinel-2A影像的监测精度,选择最优监测方法。【结果】使用Landsat-8影像,基于目视解译及4种监督分类方法的精度依次为97. 54%、77. 31%、91. 35%、91. 89%和83. 15%;使用Sentinel-2A影像,基于目视解译及4种监督分类方法的精度依次98. 82%、80. 80%、87. 01%、93. 89%和85. 41%。【结论】①2种影像的日光温室监测均适于使用最大似然法,其估算精度与目视解译精度误差分别为5. 65%和4. 93%;②遥感监测显示,2016年陆良县日光温室主要集中于该县湖积平原区。基于Landsat-8影像监测的面积为5381. 62 hm2,基于Sentinel-2A影像监测的面积为5347. 84 hm2。
|