首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of microbial nitrogen immobilization during the growth period on the availability of nitrogen fertilizer for winter cereals
Authors:K Blankenau  H-W Olfs  H Kuhlmann
Institution:(1) Centre for Plant Nutrition and Environmental Research Hanninghof, Hanninghof 35, 48249 Dülmen, Germany e-mail: klaus.blankenau@hydro.com Tel.: +49-2594-798242 Fax: +49-2594-7455, DE;(2) Hydro Agri Deutschland, Hanninghof 35, 48249 Dülmen, Germany, DE
Abstract: Pot and field experiments were conducted to determine microbial immobilization of N fertilizer during growth periods of winter wheat and winter barley. In a pot experiment with winter wheat, Ca(15NO3)2 was applied at tillering Zadok's growth stage (GS) 25)], stem elongation (GS 31) and ear emergence (GS 49). Rates of 100 mg N pot–1, 200 mg N pot–1 or 300 mg N pot–1 were applied at each N application date. At crop maturity, 15N-labelled fertilizer N immobilization was highest at the highest N rate (3×300 mg N pot–1). For each N-rate treatment about 50% of the total immobilized fertilizer N was immobilized from the first N dressing, and 30% and 20% of the total 15N immobilized was derived from the second and third applications, respectively. In field trials with winter wheat (three sites) and winter barley (one site) N was applied at the same growth stages as for the pot trial. N was also applied to fallow plots, but only at GS 25. N which was not recovered (neither in crops nor in soil mineral N pools) was considered to represent net immobilized N. A clear effect of N rate (51–255 kg N ha–1) on net N immobilization was not found. The highest net N immobilization was found for the period between GS 25 (March) and GS 31 (late April) which amounted to 54–97% of the total net N immobilized at harvest (July/August). At GS 31, non-recovered N was found to be of similar magnitude for cropped and fallow plots, indicating that C from roots did not affect net N immobilization. Microbial biomass N (Nmic) was determined for cropped plots at GS 31. Although Nmic tended to be higher in fertilized than in unfertilized plots, fertilizer-induced increases in Nmic and net N immobilization were poorly correlated. It can be concluded that microbial immobilization of fertilizer N is particularly high after the first N application when crop growth and N uptake are low. Received: 6 July 1999
Keywords:  Nitrogen immobilization  Nitrogen recovery  Cereals  Fallow  Microbial biomass nitrogen
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号