首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of training on potassium homeostasis during exercise and skeletal muscle Na+,K(+)-ATPase concentration in young adult and middle-aged Dutch Warmblood horses
Authors:Suwannachot Pisit  Joosten Brian J L J  Klarenbeek Andries  Hofma Jos  Enzerink Edwin  van Weeren P René  Everts Maria E
Institution:Department of Pathobiology, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
Abstract:OBJECTIVE: To investigate the effects of moderate short-term training on K+ regulation in plasma and erythrocytes during exercise and on skeletal muscle Na+,K(+)-ATPase concentration in young adult and middle-aged horses. ANIMALS: Four 4- to 6-year-old and four 10- to 16-year-old Dutch Warmblood horses. PROCEDURE: The horses underwent a 6-minute exercise trial before and after 12 days of training. Skeletal muscle Na+,K(+)-ATPase concentration was analyzed in gluteus medius and semitendinosus muscle specimens before and after the 12-day training period. Blood samples were collected before and immediately after the trials and at 3, 5, 7, and 10 minutes after cessation of exercise for assessment of several hematologic variables and analysis of plasma and whole-blood K+ concentrations. RESULTS: After training, Na+,K(+)-ATPase concentration in the gluteus medius, but not semitendinosus, muscle of middle-aged horses increased (32%), compared with pretraining values; this did not affect the degree of hyperkalemia that developed during exercise. The development of hyperkalemia during exercise in young adult horses was blunted (albeit not significantly) without any change in the concentration of Na+,K(+)-ATPase in either of the muscles. After training, the erythrocyte K+ concentration increased (7% to 10%) significantly in both groups of horses but did not change during the exercise trials. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, the activation of skeletal muscle Na+,K(+)-ATPase during exercise is likely to decrease with age. Training appears to result in an increase in Na+,K(+)-ATPase activity in skeletal muscle with subsequent upregulation of Na+,K(+)-ATPase concentration if the existing Na+,K(+)-ATPase capacity cannot meet requirements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号