首页 | 本学科首页   官方微博 | 高级检索  
     


Affinity of isoxsuprine for adrenoreceptors in equine digital artery and implications for vasodilatory action
Authors:Belloli C  Carcano R  Arioli F  Beretta C
Affiliation:Institute of Veterinary Pharmacology and Toxicology, University of Milan, Italy.
Abstract:We used isolated equine digital arteries to study the vasodilatory mechanism of isoxsuprine, and fowl caecum preparations to investigate the affinity of the drug for beta-adrenoceptors. Isoxsuprine is a potent vasodilator of arterial smooth muscle that has been precontracted by an alpha-adrenoceptor agonist such as noradrenaline (log EC50 = -6.33 [-5.98; -6.68]). The present study indicates that its effect is due to alpha-adrenoceptor blockade since: (1) after a long lasting exposure to cumulative doses of isoxsuprine the vasoconstricting action of noradrenaline cannot be restored; (2) isoxsuprine does not promote relaxation on preparations precontracted by PGF2alpha; (3) isoxsuprine shifts the dose-response curve of noradrenaline to the right; and (4) its affinity (pK(B) = 6.90 [6.60; 7.20]) in this experiment is comparable to that in noradrenaline-precontracted preparations and is 14 times lower than that of the selective alpha1-adrenergic antagonist prazosin [pK(B) = 8.04 (7.40; 8.68]). The affinity of isoxsuprine for beta-adrenoceptors was 100 times lower than that of isoprenaline when tested on fowl caecum. This preparation has a large beta-adrenoceptor and negligible alpha-adrenoceptor population concerned with the control of smooth muscle motility. Our data suggest that the alpha-mediated effect of isoxsuprine on horse arterial smooth muscle is due to higher affinity of the drug for alpha- than beta-adrenoceptors rather than low concentration or functionality of beta-sites at this site. According to these data, pure beta2-agonists seem to be more profitable tools to determine vasodilation of the arterial bed in horses legs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号