首页 | 本学科首页   官方微博 | 高级检索  
     


Systematic variation in xylem hydraulic capacity within the crown of white ash (Fraxinus americana)
Authors:Joyce B J  Steiner K C
Affiliation:School of Forest Resources, 206 Forest Resources Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Abstract:A 7-m tall white ash tree (Fraxinus americana Marsh.) was dissected, and hydraulic parameters of the xylem were determined by inducing a steady-state flow of water through the stem segments and monitoring volume and velocity flow rates. Leaf-specific conductivity (LSC) was highest in the main stem and lowest in some of the leaf-bearing lateral shoots. The LSC was higher in the main stem than in branches and higher in primary than in secondary branch axes. Terminal leaf-bearing shoots were larger and had a significantly greater mean LSC than subjacent lateral shoots. A significant reduction in LSC was associated with the transition between 1- and 2-year-old growth. In branches of the same age, there was a close correspondence among LSC, branch position and branch size. The average LSC of leaf-bearing shoots from south-facing branches was 43% greater than that of shoots from north-facing branches. Within-crown variation in LSC was associated with variation in velocity flow rate (V). By contrast, the ratio of potentially functional xylem area to supported leaf area (A(pf)/A(l)) was relatively stable throughout the crown. Stratification of stems by Strahler order accounted for approximately 70% of the total variation in LSC. These results suggest that (1) there exists a systematic pattern of variation in LSC distribution within the crown of white ash, (2) within-crown variability in LSC is primarily the result of variation in mean vessel diameter, and (3) there is a physiological linkage between LSC and crown morphology that is maintained through a positive feedback mechanism during branch ontogeny.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号