首页 | 本学科首页   官方微博 | 高级检索  
     

荔枝剪枝堆肥和蚯蚓粪作为巨大普里斯特氏菌载体的研究
引用本文:余小兰,李勤奋,李光义,张俏燕,李晓亮. 荔枝剪枝堆肥和蚯蚓粪作为巨大普里斯特氏菌载体的研究[J]. 农业环境科学学报, 2024, 43(3): 704-710
作者姓名:余小兰  李勤奋  李光义  张俏燕  李晓亮
作者单位:中国热带农业科学院环境与植物保护研究所, 海南省热带生态循环农业重点实验室/农业农村部热区高效农业绿色低碳重点实验室, 海口 571101;海南儋州热带农业生态系统国家野外科学观测研究站, 海南 儋州 571737;国家农业环境儋州观测实验站/国家农业绿色发展长期固定观测儋州试验站, 海南 儋州 571737;中国热带农业科学院环境与植物保护研究所, 海南省热带生态循环农业重点实验室/农业农村部热区高效农业绿色低碳重点实验室, 海口 571101;国家农业环境儋州观测实验站/国家农业绿色发展长期固定观测儋州试验站, 海南 儋州 571737;国家农业环境儋州观测实验站/国家农业绿色发展长期固定观测儋州试验站, 海南 儋州 571737;中国热带农业科学院热带作物品种资源研究所/儋州菜田土壤海南省野外科学观测研究站, 海南 儋州 571737
基金项目:海南省重大科技计划项目(ZDKJ2021009);海南省自然科学基金项目(320QN313,421QN0916);中国热带农业科学院基本科研业务费专项(1630042022002,1630042022010)
摘    要:为探讨荔枝茎秆堆肥与蚯蚓粪替代草炭作为巨大普里斯特氏菌载体的可行性,以荔枝剪枝堆肥、蚯蚓粪和草炭为原料构建6种微生物载体(ST1、ST2、ST3、ST4、ST5、ST6,三者质量比分别为6∶2∶2、4∶2∶4、2∶2∶6、6∶3∶1、4∶3∶3、2∶3∶5),以草炭为对照,巨大普里斯特氏菌为目标微生物,动态监测载体中有效活菌数,获得适宜巨大普里斯特氏菌存活的载体;在此基础上,分别设置含水量20%、30%、40%,温度20、30、40、50℃和接种浓度106、107、108cfu·mL-1,动态监测载体中有效活菌数,优化载体含水量、温度和接种浓度。结果表明:随着培养时间的延长,各载体中活菌数均呈先降低后升高的趋势,其中ST2、ST5载体长期培养后活菌数高,且草炭添加量低,是适宜的巨大普里斯特氏菌载体。随着载体含水量、温度的升高,培养的60 d过程中ST2和ST5载体活菌数均呈先升高后降低的趋势,在30%含水量(ST2 2.46×108 cfu·g-1、ST5 1.81×108 cfu·g-1)以及30℃(ST2 3.44×108 cfu·g-1、ST5 1.87×108 cfu·g-1)、40℃(ST2 8.50×107cfu·g-1、ST5 7.13×107cfu·g-1)温度下的活菌数最高。此外,各培养时期的载体活菌数均随着接种浓度的升高而升高,培养60 d后,ST2、ST5载体活菌数分别达3.63×108、3.33×108cfu·g-1。研究表明,载体ST2和ST5适宜代替草炭作为巨大普里斯特氏菌的载体,且在30%载体含水量、30~40℃温度和108 cfu·mL-1接种浓度下效果最佳。

关 键 词:荔枝剪枝堆肥  蚯蚓粪  载体  巨大普里斯特氏菌  有效活菌数
收稿时间:2023-03-27

Use of lychee pruning compost and vermicompost as carriers of Priestia megaterium
YU Xiaolan,LI Qinfen,LI Guangyi,ZHANG Qiaoyan,LI Xiaoliang. Use of lychee pruning compost and vermicompost as carriers of Priestia megaterium[J]. Journal of Agro-Environment Science( J. Agro-Environ. Sci.), 2024, 43(3): 704-710
Authors:YU Xiaolan  LI Qinfen  LI Guangyi  ZHANG Qiaoyan  LI Xiaoliang
Affiliation:Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Key Laboratory of Tropical Eco-Circular Agriculture/Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China;Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China;National Agricultural Experimental Station for Agricultural Environment/National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, China;Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Key Laboratory of Tropical Eco-Circular Agriculture/Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China;National Agricultural Experimental Station for Agricultural Environment/National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, China; National Agricultural Experimental Station for Agricultural Environment/National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, China;Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Field Soil Scientific Research Station in Danzhou of Hainan Province, Danzhou 571737, China
Abstract:This study aimed to evaluate the feasibility of lychee pruning compost and vermicompost to replace peat as carriers of Priestia megaterium. In the present experiment, we produced six mixed carriers of the target bacteria, P. megaterium, by using different ratios of lychee pruning compost, vermicompost, and peat; we labelled these different mixes as ST1, ST2, ST3, ST4, ST5, and ST6 with mass ratios of 6:2:2, 4:2:4, 2:2:6, 6:3:1, 4:3:3, and 2:3:5, respectively. The peat(CK) alone was used as the control. We dynamically monitored the viable counts within the carriers at different cultivation times to determine which mixed carrier formula was suitable for the survival of P. megaterium. On this basis, we set different water contents(20%, 30%, 40%), temperatures(20, 30, 40, 50℃), and inoculation concentrations(106, 107, 108 cfu·mL-1), and dynamically monitored the living bacteria; we then optimized the water content, temperature, and inoculation concentration of the carriers accordingly. The results showed that the viable count of each carrier initially decreased then increased with the cultivation time. ST2 and ST5 were determined to both be optimal carriers of P. megaterium, according to their high viable counts of P. megaterium after long term of cultivation and their relatively low peat composition. After 60 days of cultivation, with increasing water content and temperature, viable counts increased before decreasing; the highest viability counts were achieved at 30% water content(ST2 2.46×108 cfu·g-1, ST5 1.81×108 cfu·g-1) and at 30℃(ST2 3.44×108 cfu·g-1, ST5 1.87×108 cfu·g-1) and 40℃(ST2 8.50×107cfu·g-1, ST5 7.13×107cfu·g-1). Moreover, the viable count within the carrier at each cultivation stage increased with increasing inoculation concentrations; the viable counts of ST2 and ST5 reached 3.63×108 and 3.33×108 cfu·g-1, respectively, after 60 days of cultivation. Overall, the mixed carriers ST2 and ST5 are most suitable alternatives that can be used to replace peat as carriers of P. megaterium; the optimal conditions for these carriers are 30% water content, 30-40℃ temperature, and 108 cfu·mL-1inoculation concentration.
Keywords:lychee pruning compost  vermicompost  carrier  Priestia megaterium  viable count
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号