首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction of horseradish peroxidase with montmorillonite homoionic to Na+ and Ca2+: effects on enzymatic activity and microbial degradation
Institution:1. Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China;2. Radiology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;3. Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Nanjing 210029, China
Abstract:The adsorption, desorption, catalytic activity, and susceptibility to microbial degradation of the enzyme horseradish peroxidase (HRP E.C. 1.11.1.7), on Wyoming montmorillonite (M) homoionic to Na+ or Ca2+ were investigated. Adsorption at equilibrium was reached after 1 h of contact between the clay and HRP. The adsorption isotherms were of the L type and fitted the Freundlich equation on M-Na and the Langmuir equation on M-Ca. Adsorption was greater on M-Na than on M-Ca and was maximal at pH 3.0, i.e., below the isoelectric point (pI=pH 9) of the protein. Only 10–25% of HRP was desorbed from the equilibrium M-Na-HRP complexes, whereas 20–30% was desorbed from the equilibrium M-Ca-HRP complexes with 4–7 washes with double distilled water. HRP partially penetrated the interlayers of M-Na and M-Ca, but complete intercalation was observed only at pH 3. The enzymatic activity of HRP measured immediately after the preparation of the complexes at all concentrations was greatly reduced when bound on M-Na (about 90%), regardless of the loading of HRP. The reduction in activity of M-Ca-HRP was related to the amount of bound protein (no reduction for the highest and 60% for the lowest amount bound). After 24 h, pure HRP in dilute solution lost about 10% of its catalytic activity daily, whereas when bound on M-Ca, a greater reduction was observed (about 30% for the highest and 60% for the lowest amount bound). FT-IR analyses indicated only small changes in the secondary structure of HRP as a result of binding on the clays. Electronic absorption spectra in the UV region of bound HRP did not show the typical ‘red-shift’ of the Soret band that usually results from binding of HRP with its substrate. Consequently, the reduction in the activity of bound HRP was probably the result of the inaccessibility and/or of modifications of the active center of HRP for its substrate. The availability of HRP bound on M-Na as a source of carbon and/or nitrogen for soil microorganisms was reduced by 90% in comparison with the free enzyme.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号