首页 | 本学科首页   官方微博 | 高级检索  
     

关中平原冬小麦临界磷浓度稀释曲线的构建与磷营养诊断
引用本文:李巧丽,刘朋召,师祖姣,刘苗,陈跻,李慧,王小利,王瑞,李军. 关中平原冬小麦临界磷浓度稀释曲线的构建与磷营养诊断[J]. 植物营养与肥料学报, 2022, 28(11): 2011-2019. DOI: 10.11674/zwyf.2022104
作者姓名:李巧丽  刘朋召  师祖姣  刘苗  陈跻  李慧  王小利  王瑞  李军
作者单位:西北农林科技大学农学院 / 农业农村部西北黄土高原作物生理生态与耕作重点实验室,陕西杨凌 712100
基金项目:国家科技支撑计划项目 (2015BAD22B02);国家高技术研究发展计划 (863计划) 项目 (2013AA102902);国家自然科学基金项目(31801300)。
摘    要:【目的】基于关中平原冬小麦施磷量与小麦磷营养的关系,建立临界磷浓度稀释曲线,为当地冬小麦科学施磷提供理论依据。【方法】长期定位施磷田间试验始于2009年,供试小麦品种为‘西农979’。设置4个施磷水平(P2O5) 0、60、120、180 kg/hm2,分别记为P0、P60、P120和P180处理。于2018—2021年冬小麦拔节期、孕穗期、开花期、灌浆期和成熟期取样,分析冬小麦地上部生物量、植株磷浓度,记录小麦产量。利用2018—2020年冬小麦地上部生物量和植株磷含量建立临界磷浓度稀释模型,计算磷营养指数(PNI)。依据2020—2021年冬小麦数据验证磷营养指数诊断的可靠性。【结果】1)施用磷肥可显著增加冬小麦穗数和穗粒数,显著降低千粒重,2018—2021年3季冬小麦依次提高穗数50.7%~53.0%、23.1%~29.7%和17.5%~19.0%,穗粒数依次提高28.6%~34.2%、22.7%~24.1%和18.7%~19.6%,千粒重依次降低1.1%~2.9%、3.5%~7.0%和1.3%~4.9%,P60...

关 键 词:关中平原  冬小麦  施磷量  临界磷浓度稀释曲线  磷营养指数
收稿时间:2022-03-01

Construction of critical phosphorus concentration dilution curve and phosphorus nutrition diagnosis of winter wheat in Guanzhong plain
LI Qiao-li,LIU Peng-zhao,SHI Zu-jiao,LIU Miao,CHEN Ji,LI Hui,WANG Xiao-li,WANG Rui,LI Jun. Construction of critical phosphorus concentration dilution curve and phosphorus nutrition diagnosis of winter wheat in Guanzhong plain[J]. Plant Nutrition and Fertilizer Science, 2022, 28(11): 2011-2019. DOI: 10.11674/zwyf.2022104
Authors:LI Qiao-li  LIU Peng-zhao  SHI Zu-jiao  LIU Miao  CHEN Ji  LI Hui  WANG Xiao-li  WANG Rui  LI Jun
Affiliation:College of Agronomy, Northwest A&F University / Key Laboratory of Crop Physiecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
Abstract:  【Objectives】  Based on the relationship between winter wheat phosphorus application rate and wheat phosphorus nutrition in Guanzhong Plain, we established a critical phosphorus concentration dilution curve to provide a theoretical basis for meeting the P needs of local winter wheat.  【Methods】  The long-term localization phosphorus field experiment was established in 2009, and the wheat variety was Xinong 979. The four phosphorus application treatments (P2O5) tested were 0, 60, 120, 180 kg/hm2, noted as P0, P60, P120 and P180, respectively. The above-ground plant samples were determined at the jointing, booting, flowering, filling, and maturity periods of the winter wheat from 2018 to 2021, and the above-ground biomass and plant phosphorus concentration were analyzed, the wheat yield was also evaluated. A critical phosphorus concentration dilution model was used to calculate the P nutrient index (PNI). The reliability of phospho-nutrition index was verified based on winter wheat data from 2020 to 2021.  【Results】  1) P fertilization significantly increased the panicle number in three seasons by 50.7%–53.0%, 23.1%–29.7%, and 17.5%–19.0%, increased the grain number per panicle by 28.6%–34.2%, 22.7%–24.1% and 18.7%–19.6%, but reduced 1000-grain weight by 1.1%–2.9%, 3.5%–7.0% and 1.3%–4.9%, respectively. The panicle number elicited by P120 and P180 treatments were similar. With the increase in P application rate, the grain yield increased first and then decreased, and the yield in the three seasons was increased by 104.3%–108.2%, 39.8%–47.4%, and 27.6%–32.5% on average, with the maximum yield of 7100 kg/hm2, 6369 kg/hm2, and 6714 kg/hm2 under the P120 treatment. 2) The aboveground biomass of winter wheat gradually increased with the progress in the growth process, and the P concentration in the upper aboveground part gradually decreased. Based on the aboveground biomass and P concentration of winter wheat in 2019—2020, a critical P concentration dilution curve model was established: Pc=6.00DM–0.43, with the RMSE of 0.09, and n-RMSE of 3.45%, indicating that the reliability and stability of the model simulation values meet the requirements. 3) The PNI of wheat was mainly affected by P application rate, not by growing stage. P120 treatment had the PNI closest to 1.  【Conclusions】  Based on above-ground biomass and P concentration of winter wheat under different P application rates, the critical phosphorus concentration dilution curve model and P nutrition index (PNI) model can ideally diagnose the status of phosphorus, balance in winter wheat in Guanzhong plain, and can be used as a tool for phosphorus content assessment and guidance of phosphorus fertilizer application.
Keywords:
点击此处可从《植物营养与肥料学报》浏览原始摘要信息
点击此处可从《植物营养与肥料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号